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Box-Jenkins Methodology

The Box-Jenkins methodology is a procedure for identifying,
selecting and estimating ARMA models for discrete univariate time
series
Step 1. Establish the stationarity of your time series. If it is
non-stationary try to transform it to be stationary
Detrending and deseasonalizing, unit root tests

Step 2. Identify a (stationary) ARMA model for your data
Estimation of model’s type and its order

Step 3. Estimate the parameters of the chosen model
Fitting the model’s parameters to the data

Step 4. Conduct goodness-of-fit checks to ensure the model
describes your data adequately
Statistical analysis of residuals

Step 5. Use the model to forecasting
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Integrated Process

A unit root process (or difference-stationary process, DSP) {𝑌𝑡} is
a stochastic process whose first difference is stationary:

𝑌𝑡 = 𝑐 + 𝑌𝑡−1 + 𝜀𝑡

where {𝜀𝑡} is a stationary process, 𝑐 is a drift

The process {𝑌𝑡} can be transformed to stationary process {𝜀𝑡} by
differencing and conversely it can be obtained by integrating the
stationary process {𝜀𝑡}

Definition
The process {𝑌𝑡} is called integrated processes of order 𝐷 (or 𝐼(𝐷)
process) if it can be obtained by integrating some stationary
process {𝜀𝑡} 𝐷 times

If {𝑌𝑡} is 𝐼(𝐷) process then its 𝐷-th differenced process {∆𝐷𝑌𝑡} is
stationary
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Differencing Operator

The previous value 𝑌𝑡−1 can be rewritten using the lag operator 𝐿:

𝑌𝑡−1 = 𝐿𝑌𝑡

The differenced process in operator form:

∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝑌𝑡 − 𝐿𝑌𝑡 = (1 − 𝐿)𝑌𝑡

The differencing operator ∆ is related to the lag operator 𝐿:

∆ = 1 − 𝐿

and the 𝐷-th differencing operator:

∆𝐷 = (1 − 𝐿)𝐷

∆𝐷𝑌𝑡 = (1 − 𝐿)𝐷𝑌𝑡
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ARIMA Process

Let {𝑌𝑡} be 𝐼(𝐷) process. Then the differenced process {∆𝐷𝑌𝑡} is
stationary and it can be modelled as stationary ARMA(𝑝,𝑞) process

Definition
Discrete-time autoregressive integrated moving average process of
AR order 𝑝, MA order 𝑞 and differentiation order 𝐷
(ARIMA(𝑝,𝐷,𝑞) process) {𝑌𝑡, 𝑡 = 0, 1, ...} is defined as:

∆𝐷𝑌𝑡 = 𝑐+𝜑1∆
𝐷𝑌𝑡−1 + ...+𝜑𝑝∆

𝐷𝑌𝑡−𝑝 +𝜀𝑡 +𝜃1𝜀𝑡−1 + ...+𝜃𝑞𝜀𝑡−𝑞

where {𝜀𝑡} is a discrete-time white noise and 𝑐, 𝜑1, ..., 𝜑𝑝, 𝜃1, ..., 𝜃𝑞
are constants

ARIMA models with differentiation order 𝐷 are are applicable to
model 𝐼(𝐷) processes
In a particular case, 𝐴𝑅𝐼𝑀𝐴(𝑝, 0, 𝑞) ≡ 𝐴𝑅𝑀𝐴(𝑝, 𝑞)
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ARIMA Process in Operator Form

ARIMA(𝑝,𝐷,𝑞) process:

∆𝐷𝑌𝑡 = 𝑐+𝜑1∆
𝐷𝑌𝑡−1 + ...+𝜑𝑝∆

𝐷𝑌𝑡−𝑝 +𝜀𝑡 +𝜃1𝜀𝑡−1 + ...+𝜃𝑞𝜀𝑡−𝑞

In operator form:

(1−𝐿)𝐷𝑌𝑡 = 𝑐+(1−𝐿)𝐷(𝜑1𝐿+...+𝜑𝑝𝐿
𝑝)𝑌𝑡+(1+𝜃1𝐿+...+𝜃𝑞𝐿

𝑝)𝜀𝑡

(1 − 𝐿)𝐷(1 − 𝜑1𝐿− ...− 𝜑𝑝𝐿
𝑝)𝑌𝑡 = 𝑐 + (1 + 𝜃1𝐿 + ... + 𝜃𝑞𝐿

𝑞)𝜀𝑡

𝜑*(𝐿)𝑌𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡

where
𝜑*(𝐿) = (1 − 𝐿)𝐷𝜑(𝐿)

𝜑(𝐿) = 1 − 𝜑1𝐿− ...− 𝜑𝑝𝐿
𝑝 (stable)

𝜃(𝐿) = 1 + 𝜃1𝐿 + ... + 𝜃𝑞𝐿
𝑞 (invertible)

The characteristic polynomial 𝜑*(𝑧) of ARIMA(𝑝,𝐷,𝑞) process has
exactly 𝐷 unit roots
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ARMA Process vs ARIMA Process

The characteristic polynomial of ARMA(𝑝,𝑞) process:

𝜑(𝐿)𝑌𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡

The characteristic polynomial of ARIMA(𝑝,𝐷,𝑞) process:

(1 − 𝐿)𝐷𝜑(𝐿)𝑌𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡

if ARMA(𝑝,𝑞) process has 𝐷 unit roots, then it is ARIMA(𝑝,𝐷,𝑞)
process

ARIMA(𝑝,𝐷,𝑞) process is a type of non-stationary random walk
process with 𝐷 unit roots

ARIMA(𝑝,𝐷,𝑞) model of the time series {𝑦1, ..., 𝑦𝑇 } is equivalent
to ARMA(𝑝,𝑞) model of 𝐷 times differenced time series
{∆𝐷𝑦1, ...,∆

𝐷𝑦𝑇 }
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Under-differencing and Over-differencing

If the unit root tests (e.g. augmented Dickey-Fuller test) reveal
that the process {𝑌𝑡} has a unit root it should be differenced to
achieve stationarity

𝐼(𝐷) process should be differenced 𝐷 times

For highly persistent but stationary 𝐼(0) processes the unit root
tests tend to fail, so the 𝐼(0) process will be considered as 𝐼(1)
process and will be wrongly differenced, i.e. over-differenced

If 𝐼(1) process is wrongly considered as 𝐼(0) process and so won’t
be differenced it results to be under-differenced

What is the cost of under-differencing and over-differencing
in time series modelling and forecasting?
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To Diff or Not to Diff?

If {𝑌𝑡} is 𝐼(0) ARMA process, then the differenced process will
have a unit root in MA part:

𝜑(𝐿)𝑌𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡

(1 − 𝐿)𝜑(𝐿)𝑌𝑡 = (1 − 𝐿)𝜃(𝐿)𝜀𝑡

𝜑(𝐿)∆𝑌𝑡 = 𝜃*(𝐿)𝜀𝑡

where
∆𝑌𝑡 = (1 − 𝐿)𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1

is differenced process, and characteristic MA polynomial
𝜃*(𝐿) = (1 − 𝐿)𝜃(𝐿) has a unit root

It means that differenced stationary ARMA process is
non-invertible, i.e. it cannot be represented in stable AR(∞) form,
the problems in its coefficients estimation and time series
forecasting occur
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Fear of Over-Differencing

If the data is really stationary then differencing the data can result
in a misspecified model

Over-differencing tremendously emphasizes the small specification
inaccuracies and measurement errors in the data, relative to the
signal under modelling

Iterated differentiation of a time series makes it more memoryless
but a time series can be both memoryless and non-stationary

Many researchers avoid over-differencing, it is the fear of
over-differencing
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Choosing ARIMA Structural Parameters

The parameters 𝑝, 𝐷, 𝑞 or ARIMA(𝑝,𝐷,𝑞) model are structural and
must be specified. To estimate them the qualitative and
quantitative analysis of ACF and PACF and unit root tests are used

Rules to choose 𝑝, 𝐷, 𝑞:
If the PACF displays a sharp cutoff while the ACF decays more
slowly (the time series displays so called “AR signature”), this
autocorrelation pattern can be explained more easily by adding
AR terms than by adding MA terms. The lag at which the
PACF cuts off is the estimate of 𝑝

If the ACF displays a sharp cutoff while the PACF decays more
slowly (the time series displays so called “MA signature”), this
autocorrelation pattern can be explained more easily by adding
MA terms than by adding AR terms. The lag at which the
ACF cuts off is the estimate of 𝑞
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AR Pattern. Illustration
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MA Pattern. Illustration
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ARIMA Parameters Estimation

The parameters 𝑝, 𝐷, 𝑞 completely determine the model structure
and must be specified. All other parameters (coefficients 𝜑1, ..., 𝜑𝑝,
𝜃1, ..., 𝜃𝑞, variance of innovations 𝜎2) are estimable

Maximum likelihood estimation (MLE) method is commonly used
for ARIMA parameters estimation

Under assumption that random vector of innovations has Gaussian
distribution:

𝜀 = (𝜀1, ..., 𝜀𝑇 )𝑇 ∼ 𝑁(0, 𝜎2𝐼)

we write the likelihood function:

ℒ (𝜀) =
1(︁√

2𝜋𝜎2
)︁𝑇 exp

⎛⎝− 1

2𝜎2

𝑇∑︁
𝑡=𝑝+1

𝜀2𝑡

⎞⎠
For AR(𝑝) processes the ordinary least square (OLS) estimation can
also be used (since the errors 𝜀1, ..., 𝜀𝑇 can be calculated directly)
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MLE Estimation

Given the time series 𝑦1, ..., 𝑦𝑇 , the likelihood function ℒ (𝜀)
depends on unknown parameters 𝜑1, ..., 𝜑𝑝, 𝜃1, ..., 𝜃𝑞 since

𝜑*(𝐿)𝑦𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡

𝜀𝑡 = 𝜃(𝐿)−1(𝜑*(𝐿)𝑦𝑡 − 𝑐)

and 𝜑(𝐿) depends on 𝜑1, ..., 𝜑𝑝 and 𝜃(𝐿) depends on 𝜃1, ..., 𝜃𝑞

MLE estimation consists in solving the optimization problem

ℒ (𝜀) → max
𝜑1,...,𝜑𝑝,𝜃1,...,𝜃𝑞

To solve it the iterative methods of non-linear optimization are
used. They require initial values of estimated parameters. They can
be set to zeros or special techniques to estimate them can be
applied
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Presample Data Initialization

Sample data is observed time series 𝑦1, ..., 𝑦𝑇 . Presample data
comes from time points before the beginning of the observation
period. For example, for AR(2) model:

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝜀𝑡

𝜀𝑡 = 𝑦𝑡 − 𝑐− 𝜑1𝑦𝑡−1 − 𝜑2𝑦𝑡−2

the innovation 𝜀2 explicitly depends on 𝑦1 and 𝑦0, and the
innovation 𝜀1 explicitly depends on unobservable 𝑦0 and 𝑦−1

The amount of presample data depends on the AR degree 𝑝 and
the amount of presample innovations depends on the MA degree 𝑞

Approaches to presample data initialization:
Use first data as presample and fit model to remaining data
Set custom presample data and innovations
Generate presample data by backward forecasting and set
presample innovations to zero
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Check for Unit Root

Let 𝜑1, ..., 𝜑𝑝, 𝜃1, ..., 𝜃𝑞 are the parameters of ARMA(𝑝,𝑞) model
fitted to the time series data 𝑦1, ..., 𝑦𝑇

Then the time series data 𝑦1, ..., 𝑦𝑇 can be considered as a sample
path of ARMA(𝑝,𝑞) process {𝑌𝑡}, where

𝑌𝑡 = 𝑐 + 𝜑1𝑌𝑡−1 + ... + 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ... + 𝜃𝑞𝜀𝑡−𝑞

How to check if this process have unit roots?
The characteristic polynomial:

𝜑(𝑧) = 1 − 𝜑1𝑧 − ...− 𝜑𝑝𝑧
𝑝

has 𝑝 roots 𝑧1, ..., 𝑧𝑝. It is time consuming to calculate them
Fast rule: if the sum 𝜑1 + ... + 𝜑𝑝 = 1, then the characteristic
polynomial has a unit root
Indeed, 𝜑(1) = 1 − 𝜑1 − ...− 𝜑𝑝 = 1 − 1 = 0 ⇒ the characteristic
polynomial 𝜑(𝑧) has a root 𝑧 = 1
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Iterative Correction of ARIMA Structural Parameters

After fitting the model to the data:

If there is a unit root in the AR part of the fitted model (the
sum of the AR coefficients is almost 1) you should reduce the
number of AR terms by one and increase the order of
differencing by one

If there is a unit root in the MA part of the model (the sum of
the MA coefficients is almost 1) you should reduce the number
of MA terms by one and reduce the order of differencing by one

Look at long-term dynamics. If it is erratic or unstable, modify
structural parameters of the model

To identify the best values of structural parameters, fit a set of
models with different parameters to the same data and choose the
best one
What criterion should be used to choose the best model?
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AIC and BIC

Criteria to take into account when choosing 𝑝, 𝐷, 𝑞:
Accuracy of model (goodness-of-fit)
Complexity of model (number of estimable parameters)

The measures that combine accuracy and complexity of the
model are informational measures:

Akaike Information Criterion (AIC)

𝐴𝐼𝐶 = −2 ln ℒ * + 2𝑘

Bayesian Information Criterion (BIC)

𝐵𝐼𝐶 = −2 ln ℒ * + 𝑘 ln𝑇

Here ln ℒ * is the value of the maximized log-likelihood objective
function for a model with 𝑘 parameters fitted to 𝑇 data points
When comparing AIC and BIC values for multiple models, the
smaller values are better
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AIC and BIC. Notes

With AIC the penalty for model’s complexity is 2𝑘, with BIC
the penalty is 𝑘 ln𝑇

For ARIMA(𝑝,𝐷,𝑞) the number of parameters is

𝑘 = 𝑝 + 𝑞 + 1

Some simulation studies demonstrate that AIC selects the
“true model” better than BIC*

Normalized AIC:
𝑛𝐴𝐼𝐶 =

1

𝑇
𝐴𝐼𝐶

Small sample-size corrected AIC:

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘
𝑘 + 1

𝑇 − 𝑘 − 1

Vrieze S.I. Model selection and psychological theory: a discussion of the differences between the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological Methods. 2012.
Vol. 17(2), pp. 228–243.
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Likelihood Ratio Test

The primary goal of model selection is choosing the most
parsimonious model that adequately fits your data

Given the ARIMA(𝑝,𝐷, 𝑞) model, is it possible to reduce its
complexity by imposing some restrictions on its parameters
(such as assign them to zero)?

Three asymptotically equivalent tests compare a restricted model
(the null model) against an unrestricted model (the alternative
model), fitted to the same data:

Likelihood ratio test (LR-test)

Lagrange multiplier test (LM-test)

Wald test (W-test)
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Likelihood Ratio Test

Does the restriction bring significant changes in optimal
value of log-likelihood function?
Various statistical tests can be used to check it. One of them is
likelihood ratio (LR) test
Assume ℒ * and ℒ *

0 is the value of the maximized log-likelihood
objective function for unrestricted model (e.g. ARIMA(𝑝,𝐷,𝑞)) and
restricted model (e.g. ARIMA(𝑝− 1,𝐷,𝑞))
Null hypothesis 𝐻0: ℒ * and ℒ *

0 differs insignificantly
Test statistic:

𝑍 = 2(ℒ * − ℒ *
0 ), 𝑍|𝐻0 ∼ 𝜒2(𝑟)

where 𝑟 is the number of restricted parameters
Critical region: right-sided
If 𝐻0 is accepted, then the null model can be restricted
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Goodness of Fit

After specifying a model and estimating its parameters, it is good
practice to perform goodness-of-fit checks to diagnose the
adequacy of your fitted model

When assessing model adequacy, areas of primary concern
are:

Violations of model assumptions

Poor predictive performance

Missing explanatory variables

Goodness-of-fit checks can help you identify areas of model
inadequacy and suggest ways to improve your model
They include the analysis of model’s residuals and estimating the
model performance on unseen data
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Residual Diagnostics

Normality (innovations have Gaussian distribution)
How to check: histogram, box plot, goodness-of-fit tests, etc.
If non-normal: specify other distribution for innovations and
fit the model again

Autocorrelation (innovation process is assumed to be
uncorrelated)
How to check: ACF, PACF, Ljung-Box Q-test, etc.
If correlated: include additional AR or MA terms to the model

Conditional heteroscedasticity (innovation process has
constant variance)
How to check: ACF, PACF, Ljung-Box Q-test for squared
residual series, Engle’s test etc.
If heteroscedastic: include a conditional variance process to
the model (e.g. GARCH model)

А.Г. Трофимов ARIMA Models 24 / 47



ARIMA Model Identification
Model Simulation and Forecasting

ARIMA Process
Model Identification
Model Selection and Diagnostics

Residual Diagnostics. Illustration
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Prediction Mean Squared Error

To estimate the predictive performance divide your time series into
two parts: a training set and a test set. Fit the model to the
training data and simulate the fitted model over the test period to
estimate possible overfitting

Prediction mean squared error (PMSE):

𝑃𝑀𝑆𝐸 =
1

𝑇 − 𝑇𝑡𝑟𝑎𝑖𝑛

𝑇∑︁
𝑡=𝑇𝑡𝑟𝑎𝑖𝑛+1

(𝑦𝑡 − 𝑦𝑡)
2

where 𝑦𝑡 and 𝑦𝑡 are observed and predicted value at time moment 𝑡

It’s good practice to calculate PMSE for various 𝑇𝑡𝑟𝑎𝑖𝑛 to verify the
robustness of your results

The unseen period can be used to test a great number of models
and choose the model whose errors are smallest in it. In this case
the third, validation sample is needed
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Optimal Forecasting

Assume the ARMA model is fitted on the sample time series
𝑦1, ..., 𝑦𝑇 and 𝜀1, ..., 𝜀𝑇 are residuals, 𝜀𝑡 = 𝑦𝑡 − 𝑦𝑡, where 𝑦𝑡 is
modelled value at time 𝑡, 𝑡 = 1, ..., 𝑇

How to obtain the future values 𝑦𝑇+ℎ, ℎ = 1, 2, ...?

Criterion of forecast optimality in mean squared sense:

M
[︀
(𝑌𝑇+ℎ − 𝑦𝑇+ℎ)2|𝑇

]︀
→ min

𝑦𝑇+ℎ

The expectation is conditioned by all known values {𝑦𝑡}, {𝜀𝑡}
M[(𝑌𝑇+ℎ − 𝑦𝑇+ℎ)2|𝑇 ] = M[𝑌 2

𝑇+ℎ|𝑇 ] − 2M[𝑌𝑇+ℎ|𝑇 ]𝑦𝑇+ℎ + 𝑦2𝑇+ℎ

= D[𝑌𝑇+ℎ|𝑇 ] + M[𝑌𝑇+ℎ|𝑇 ]2 − 2M[𝑌𝑇+ℎ|𝑇 ]𝑦𝑇+ℎ + 𝑦2𝑇+ℎ

= D[𝑌𝑇+ℎ|𝑇 ] + (M[𝑌𝑇+ℎ|𝑇 ] − 𝑦𝑇+ℎ)2

Thus, the optimal forecast 𝑦𝑇+ℎ is forecast by regression:

𝑦𝑇+ℎ = M[𝑌𝑇+ℎ|𝑇 ] = M[𝑌𝑇+ℎ|𝑦1, ..., 𝑦𝑇 , 𝜀1, ..., 𝜀𝑇 ]
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AR(1) Model Forecasting

Optimal forecast:

𝑦𝑡+ℎ = M[𝑌𝑡+ℎ|𝑡] = M[𝑌𝑡+ℎ|𝑦1, ..., 𝑦𝑡, 𝜀1, ..., 𝜀𝑡]

AR(1) model:
𝑌𝑡 = 𝑐 + 𝜑1𝑌𝑡−1 + 𝜀𝑡

M[𝑌𝑡+1|𝑡] = M[𝑐+𝜑1𝑌𝑡+𝜀𝑡+1|𝑡] = 𝑐+𝜑1M[𝑌𝑡|𝑡]+M[𝜀𝑡+1|𝑡] = 𝑐+𝜑1𝑦𝑡

M[𝑌𝑡+2|𝑡] = M[𝑐 + 𝜑1𝑌𝑡+1 + 𝜀𝑡+2|𝑡] = 𝑐 + 𝜑1M[𝑌𝑡+1|𝑡] + M[𝜀𝑡+2|𝑡]
= 𝑐 + 𝜑1(𝑐 + 𝜑1𝑦𝑡) = 𝑐(1 + 𝜑1) + 𝜑2

1𝑦𝑡

M[𝑌𝑡+ℎ|𝑡] = M[𝑐 + 𝜑1𝑌𝑡+ℎ−1 + 𝜀𝑡+ℎ|𝑡] = 𝑐 + 𝜑1M[𝑌𝑡+ℎ−1|𝑡] + M[𝜀𝑡+ℎ|𝑡]
= 𝑐 + 𝜑1M[𝑌𝑡+ℎ−1|𝑡]

M[𝑌𝑡+ℎ|𝑡] = 𝑐

ℎ−1∑︁
𝑖=0

𝜑𝑖
1 + 𝜑ℎ

1𝑦𝑡
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AR(1) Model Forecasting

Optimal forecast for AR(1) model:

M[𝑌𝑡+ℎ|𝑡] = 𝑐

ℎ−1∑︁
𝑖=0

𝜑𝑖
1 + 𝜑ℎ

1𝑦𝑡

For |𝜑1| < 1:

M[𝑌𝑡+ℎ|𝑡] →
𝑐

1 − 𝜑1
, as ℎ → ∞

The forecast converges to the unconditional mean of AR(1) process
M[𝑌𝑡] = 𝑐

1−𝜑1
and forgets the last value 𝑦𝑡

For 𝜑1 = 1:
M[𝑌𝑡+ℎ|𝑡] = 𝑐ℎ + 𝑦𝑡

The forecast is linear function starting from the last value 𝑦𝑡

For |𝜑1| > 1: the forecast is explosive
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AR(1) Model Estimation and Simulation. Illustration
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AR(1) Model Forecast. Illustration
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MA(2) Model Forecasting

MA(2) model:

𝑌𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2

M[𝑌𝑡+1|𝑡] = M[𝑐 + 𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1|𝑡]
= 𝑐 + M[𝜀𝑡+1|𝑡] + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1 = 𝑐 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1

M[𝑌𝑡+2|𝑡] = M[𝑐 + 𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡|𝑡]
= 𝑐 + M[𝜀𝑡+2|𝑡] + 𝜃1M[𝜀𝑡+1] + 𝜃2𝜀𝑡 = 𝑐 + 𝜃2𝜀𝑡

M[𝑌𝑡+ℎ|𝑡] = M[𝑐 + 𝜀𝑡+ℎ + 𝜃1𝜀𝑡+ℎ−1 + 𝜃2𝜀𝑡+ℎ−2|𝑡] = 𝑐, ℎ > 2

The forecast converges to the unconditional mean of MA(2)
process M[𝑌𝑡] = 𝑐 and forgets the last innovations 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−2

after 2 steps
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MA(2) Model Estimation and Simulation. Illustration

А.Г. Трофимов ARIMA Models 34 / 47



ARIMA Model Identification
Model Simulation and Forecasting

Optimal Forecasting
Prediction Intervals
Predictive Accuracy Estimation

MA(2) Model Forecast. Illustration
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ARMA(1,2) Model Forecasting

ARMA(1,2) model:

𝑌𝑡 = 𝑐 + 𝜑1𝑌𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2

M[𝑌𝑡+1|𝑡] = M[𝑐 + 𝜑1𝑌𝑡 + 𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1|𝑡]
= 𝑐 + 𝜑1𝑦𝑡 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1

M[𝑌𝑡+2|𝑡] = M[𝑐 + 𝜑1𝑌𝑡+1 + 𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡|𝑡]
= 𝑐 + 𝜑1M[𝑌𝑡+1|𝑡] + 𝜃2𝜀𝑡

= 𝑐 + 𝜑1(𝑐 + 𝜑1𝑦𝑡 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1) + 𝜃2𝜀𝑡

= 𝑐(1 + 𝜑1) + 𝜑2
1𝑦𝑡 + (𝜑1𝜃1 + 𝜃2)𝜀𝑡 + 𝜑1𝜃2𝜀𝑡−1

M[𝑌𝑡+ℎ|𝑡] = M[𝑐 + 𝜑1𝑌𝑡+ℎ−1 + 𝜀𝑡+ℎ + 𝜃1𝜀𝑡+ℎ−1 + 𝜃2𝜀𝑡+ℎ−2|𝑡]
= 𝑐 + 𝜑1M[𝑌𝑡+ℎ−1|𝑡], ℎ > 2

For steps ℎ > 2 the forecast follows AR(1) pattern
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ARMA(1,2) Model Estimation and Simulation. Illustration
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ARMA(1,2) Model Forecast. Illustration
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Prediction Intervals for MA(𝑞) Model

To estimate the prediction interval for predicted value 𝑦𝑡+ℎ we need
its standard deviation:

D[𝑦𝑡+1|𝑡] = D

[︃
𝑐 + 𝜀𝑡+1 +

𝑞∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑖+1|𝑡

]︃
= D[𝜀𝑡+1] = 𝜎2

D[𝑦𝑡+2|𝑡] = D

[︃
𝑐 + 𝜀𝑡+2 +

𝑞∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑖+2|𝑡

]︃
= D[𝜀𝑡+2] + 𝜃21D[𝜀𝑡+1]

= 𝜎2(1 + 𝜃21)

D[𝑦𝑡+ℎ|𝑡] = D

[︃
𝑐 + 𝜀𝑡+ℎ +

𝑞∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑖+ℎ|𝑡

]︃
= 𝜎2

(︃
1 +

ℎ−1∑︁
𝑖=1

𝜃2𝑖

)︃
(under assumption that residuals are uncorrelated)
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Prediction Intervals for MA(𝑞) Model

The estimation of D[𝑦𝑡+ℎ|𝑡]:

�̂�2
ℎ = �̂�2[𝑦𝑡+ℎ|𝑡] = �̂�2

(︃
1 +

ℎ−1∑︁
𝑖=1

𝜃2𝑖

)︃
where �̂�2 is estimated variance of residuals, 𝜃𝑖 is estimation of 𝜃𝑖

The standartized 𝑌𝑡+ℎ:

𝑌𝑡+ℎ =
𝑌𝑡+ℎ − M[𝑌𝑡+ℎ]

𝜎[𝑌𝑡+ℎ]
∼ 𝑁(0, 1)

(under assumption that residuals are normal)

The confidence interval for M[𝑌𝑡+ℎ]:

𝑌𝑡+ℎ − 𝑢1−𝛼/2𝜎[𝑌𝑡+ℎ] < M[𝑌𝑡+ℎ] < 𝑌𝑡+ℎ + 𝑢1−𝛼/2𝜎[𝑌𝑡+ℎ]

𝑦𝑡+ℎ − 𝑢1−𝛼/2�̃�ℎ < M[𝑌𝑡+ℎ] < 𝑦𝑡+ℎ + 𝑢1−𝛼/2�̃�ℎ

А.Г. Трофимов ARIMA Models 40 / 47



ARIMA Model Identification
Model Simulation and Forecasting

Optimal Forecasting
Prediction Intervals
Predictive Accuracy Estimation

Prediction Interval for ARIMA Model

The width of prediction intervals for MA(𝑞) model grows up to
step 𝑞, then it becomes constant

To calculate prediction intervals for stable ARMA(𝑝, 𝑞) model
it should be rewritten in MA(∞) form

The width of prediction intervals for stable ARMA(𝑝, 𝑞) model
grows with step ℎ, but converges to some constant value

The width of prediction intervals for ARMA(𝑝, 𝑞) model with
unit roots (i.e. for ARIMA(𝑝,𝐷, 𝑞) model) grows infititely with
step ℎ

Usually the prediction intervals tend to be too narrow because
only the variation in the errors has been accounted for to
calculate them. There is also variation in the parameter
estimates
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ARIMA(1,1,2) Model Estimation and Simulation. Illustration

А.Г. Трофимов ARIMA Models 42 / 47



ARIMA Model Identification
Model Simulation and Forecasting

Optimal Forecasting
Prediction Intervals
Predictive Accuracy Estimation

ARIMA(1,1,2) Model Forecast. Illustration
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Naive Forecast

The 1-step ahead forecast seems to be accurate but really is
it accurate?

Consider the naive 1-step ahead forecast:

𝑦𝑡+1 = 𝑦𝑡

In naive forecast the next predicted value is equal to the current
value. It leads to 1-step delayed time series

Naive forecast corresponds to a persistent prediction model that is
often used as a reference for determining the efficiency of the
constructed model

The value
𝜂 =

𝑃𝑀𝑆𝐸𝑛𝑎𝑖𝑣𝑒 − 𝑃𝑀𝑆𝐸

𝑃𝑀𝑆𝐸𝑛𝑎𝑖𝑣𝑒

can be used as a measure of the constructed model’s efficiency over
the persistent model
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Naive Forecast. Illustration
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Predictive Performance Estimation

Let 𝑦𝑡 and 𝑦𝑡 are observed and predicted values at time moment 𝑡

There are a lot of measures of model’s predictive performance:
MSE, RMSE, MAE, MAPE, RMSLE, etc.

Mean squared error (MSE):

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑦𝑡)
2

Mean absolute percentage error (MAPE):

𝑀𝐴𝑃𝐸 =
1

𝑇

𝑇∑︁
𝑡=1

⃒⃒⃒⃒
𝑦𝑡 − 𝑦𝑡

𝑦𝑡

⃒⃒⃒⃒
All measures are calculated over test time interval

А.Г. Трофимов ARIMA Models 46 / 47



ARIMA Model Identification
Model Simulation and Forecasting

Optimal Forecasting
Prediction Intervals
Predictive Accuracy Estimation

Time Series Modelling and Forecasting. Overview

Step 1. Data preprocessing
Visual analysis of time series, ACF and PACF
Trend and seasonality estimation
Detrending and deseasonalizing
Unit root tests (ADF, PP, KPSS tests)
Time series transformations

Step 2. Model identification
Visual analysis of ACF and PACF
Maximum likelihood estimation
Compare model with alternatives (likelihood ratio test)
AIC and BIC

Step 3. Model diagnostics
Residual analysis
Validation and test data

Step 4. Time series forecasting
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