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Box-Jenkins Methodology

The Box-Jenkins methodology (1970) is a procedure for identifying,
selecting and estimating ARMA models for discrete univariate time
series data

Step 1. Establish the stationarity of your time series. If it is
non-stationary try to transform it to be stationary

Step 2. Identify a (stationary) ARMA model for your data
Step 3. Estimate the parameters of the chosen model

Step 4. Conduct goodness-of-fit checks to ensure the model
describes your data adequately

Step 5. After choosing a model and checking its fit and forecasting
ability you can use the model to forecast
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Why Stationarity?

The first step in Box-Jenkins methodology is to determine if the
time series is stationary

Why we need the time series to be stationary?

Any stationary process can be approximated with stationary ARMA
process (by Wold's theorem). It is the reason why ARMA models
are very popular and that is why we need to make sure that the
series is stationary to use these models

The detection of non-stationarity includes:
@ Graphical (qualitative) analysis
Plotting data over time, the autocorrelation function (ACF)
and the partial autocorrelation function (PACF)
@ Statistical tests

If the time series is not stationary it should be transformed to
stationary
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Autocorrelation Function (ACF)

Autocorrelation function (ACF) of stationary process {Y;} is
c(7)

p(T) = @, 7=0,1,...

where ¢(7) = M[(Y; — p)(Y;—r — p)] is autocovariance function,
= M[Y}] is expectation of the process {Y;}

Properties of autocovariances: Properties of ACF:
o ¢(0)=D[¥}] > 0 o p(0) =1
® |¢(7)] < ¢(0) ° [p(r)] <1
° cr) = c(-7) ° p(1) =p(—7)
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Sample Autocorrelation Function

Definition
Let y1, ..., yr be a realization of stationary process {Y;}. Sample
autocorrelation function (sample ACF) is

.
p(r) = 70’ 0,1,...

T—T
where &(7) = 7= 3 (yi — ¥)(Yi+r — §) is sample autocovariance
i=1

A more useful estimator of autocovariance for time series prediction
T—1

tasks: &(7) = 7 3 (i — §) Wi+r — )
i=1
In practice, substitution %_T by % doesn't matter if T'>> 7
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Correlation and Relationship

Correlation coefficient pxy represents the correlation (linear effect)
but not the causation neither direct relationship between variables
X and Y

@ Correlation # causation
Assume that random variables X and Y are both affected by a
some third factor Z (confounding variable) in the same
manner. In this case, the correlation coefficient pxy will be
high but does it mean that there is a relationship between X
and Y7

@ Correlation # direct relationship
The correlation coefficient pxy can be high because of
indirect relationship mediated by factor Z (mediation variable,
or mediator). Also pxy can be insignificant because of
masking true relationship by suppressor variable Z

A.T. Tpocdumos AHanuns aBTOKOPPENsiUNA BPEMEHHOrO psiga 6 /33



ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Confounding and Mediation

Confounder
AN
(A) Confounding Exposure | — | Outcome
Mediator
P ~
(B) Mediation Exposure | —— | Outcome

Confounding and mediation can lead to an underestimation
(masking significant correlation) or an overestimation (spurious
correlation) of the effect of X on Y
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Example 1. Confounding Factor

There is high correlation between ice cream sales and homicides in
New York. Does the consumption of ice cream causing the death of
the people?

Incorrect There is a hidden factor
(weather) which is causing both

/\+ the things. In summer people

lce-Cream Murder usually go out, enjoy nice sunny
Sales Rate day and chill themselves with ice
creams. So when it's sunny, wide
Correct range of people are outside and
loe-Creart . there is a wider selection of
Sales Rate victims for predators

+\ /+ What correlation will be if we

T fix the weather?
emperature
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Example 2. Mediation Factor

There is high correlation between grades in school and happiness.
Does grades in school causing happiness?

Grades | » Happiness

Self-Esteem
T g

7N

/ .

g
Grades ,// \'\* Happiness
|

The grades in school have a direct relationship on self-esteem, and
then self-esteem has a direct relationship on happiness

What correlation will be if we fix the self-esteem?
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Partial Correlation Coefficient

To measure the association between two random variables, with the
effect of a set of controlling random variables removed, the partial
correlation is used

Partial correlation coefficient wxy |, between X and Y given
controlling variables Z = (71, ..., Z)) can be calculated by solving
two associated linear regression problems (X on Z and Y on Z),
get the residuals, and calculate the correlation between them:

Txy|z = corr(exz,eyz)
where exz = X —M[X|Z] and ey z =Y — M[Y'|Z] are residuals

If there is only one controlling variable Z (k = 1), then

_ PXY —PXzZPYZ
TXY|Z = 5 5
\/1_PXZ\/1_PYZ
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ACF and PACF Autocorrelation Function
Correlation and Relationship
Partial Autocorrelation Function

Partial Autocorrelation Function (PACF)

Definition

Partial autocorrelation function (PACF) 7(7) of stationary process
{Y:} is defined as

71'(’7') :TrYth77—|thl---th‘r+17 7':0,1,...

m(T) is a partial correlation coefficient between Y; and Y;_. given
controlling variables Z = (Y;_1,...Yi—74+1)

The PACF 7(7) measures the correlation between Y; and Y;_,
after eliminating the linear effects of intermediate variables
Yi1,..Y 71
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of AR(1) Process

AR(1) process:
Yi=¢1Yi1+e,  (|oa] <1)

Autocovariance and ACF:

T 0-2
=T = 1
() = 61 g = drelr —1)
e(7) o? o?
p(r) = = ¢] / =¢T, 7=0,1,..
o(0)  1-9¢t/ 1-9¢7
ACF decays exponentially and it changes sign every time moment if
$1 <0
PACF: Y; depends directly only on the previous variable Y;_1, thus
1, 7=0,
W(T) = (blv T = 1a
0, 7>1
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of AR(1) Processes. lllustration
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of MA(1) Processes

MA(1) process:
Yi = 016021+, (101l <1)

Autocovariance and ACF (from Yule-Walker equations):

(1+9%)027 7_:07 1, 7—:07
o(r) = qbio®, T=1, p(r) = 1-?6?’ T=1
0, 7>1 0, 7>1

AR(o0) form of invertible MA(1) process:

o0

Z(-%)th—i et

i=1

_ C
N 1464

Y;

PACF: Y; depends directly on all previous variables Y;_1,Y; o, ...
Thus, PACF 7(7) decays exponentially and it changes sign every
time moment if 61 > 0

A.T. Tpocdumos AHanuns aBTOKOPPENsiUNA BPEMEHHOrO psifa 14 / 33



Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of MA(1) Processes. lllustration
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of AR(p) Process

AR(p) process:
Yi=c+d1Yia+ @Yo+ ..+ Y p+ et
Autocovariance:
p T
-3 ()
=1 |ZZ|

where Ay, ..., A), are some constants and z1, ..., z, are roots of
characteristic polynomial ¢(z) =1 — ¢12 — ... — pp2P

The AR(p) process is stable if all roots 21, ..., z, are outside of unit
circle. In this case ¢(7) — 0 for 7 — oo

PACF: has only p non-zero values related to coefficients ¢1, ..., ¢,
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Autocorrelations of AR and MA Processes
Autocorrelations of ARMA Process

ACF and PACF of AR, MA and ARMA Processes

ACF and PACF of AR(2) Processes. lllustration 1
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ACF and PACF of AR, MA and ARMA Processes

Autocorrelations of AR and MA Processes
Autocorrelations of ARMA Process

ACF and PACF of AR(2) Processes. lllustration 2
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of MA(q) Process

MA(q) process:
Yi=c+er+0ie-1+ ... + 0484

Autocovariance (from Yule-Walker equations):

(146 +..4602)0% 7=0
(1) =3 (07 + 0r101 + .. +0,0,—7)0, T=1,..,q
0, 7>¢q
ACF has only ¢ non-zero values related to coefficients 61, ..., 6,

PACF: is non-zero for all 7 as soon as invertible MA(q) process can
be represented as AR(c0) process

Non-invertible MA(g) process can be represented as invertible
MA(q) process by changing the coefficients and variance of
innovations
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Autocorrelations of AR and MA Processes
Autocorrelations of ARMA Process

ACF and PACF of MA(2) Processes. lllustration

ACF and PACF of AR, MA and ARMA Processes
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of ARMA(p, q) Process

ARMA(p,q) process:
Yi=c+pYia+ ... +oYip+er+ 01601+ ... + 04604

Autocovariance: is a superposition of exponentially decaying

autocovariances from AR part and ¢ non-zero autocovariances from
MA part

PACEF: is a superposition of exponentially decaying autocovariances
from MA part and p non-zero partial autocovariances from AR part

For ARMA processes neither ACF nor PACF have a cutoff, they are
both non-zero for all 7
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

ACF and PACF of ARMA(2,2) Processes. lllustration
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Autocorrelations of AR and MA Processes
ACF and PACF of AR, MA and ARMA Processes Autocorrelations of ARMA Process

Confidence Bounds for ACF and PACF

The sample ACF and PACF may differ from the theoretical ones
especially for small T

The confidence bounds (significance thresholds) are used to detect
a significant deviation of autocorrelation sequence from zero (in
assumption that observed process is a white noise):

5 1
Uy _o/20[p(T)] = ulﬂ:a/Qﬁ
where « is a significance level

If it's known that the observed process is MA(q) process:

U1 020 [P(T)] = Ut tay2 % (1 +2 Z ﬁ(ﬂ)
T=1
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Autocorrelations of AR and MA Processes
Autocorrelations of ARMA Process

ACF and PACF of AR, MA and ARMA Processes

Sample ACF and PACF of AR(1) Processes. lllustration
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Ljung-Box Q-Test
Statistical Tests for Autocorrelation

Ljung-Box Q-Test

The Ljung-Box Q-test is a quantitative way to test for
autocorrelation at multiple lags jointly

Null hypothesis Hy: p(1) =p(2) = ... = p(m) =0
Test statistic:

— AT

T(T +2)
Q(m) =T(T + Zl -
Q(m)| g, ~ x%(m), the critical region is right-sided

Ljung-Box test statistic is a modified Box-Pierce test statistic:
Qpr(m TZP )%, Qep(m)|u, ~ x*(m)

It is shown, that Q(m)|m, is better approximated by XQ(m)
distribution than Qpp(m)|,
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Ljung-Box Q-Test
Statistical Tests for Autocorrelation

Ljung-Box Q-Test. Notes

@ For zero-mean Gaussian processes the Ljung-Box Q-test is a
test for independence (a white noise test)

@ The confidence bounds check the null hypothesis that a single
autocorrelation coefficients are equal to zero independently.
The Ljung-Box Q-test checks that all autocorrelation
coefficients up to lag m are 0 simultaneously

o If m is too small, then the test does not detect high-order
autocorrelations. If m is too large, then the test loses power
when a significant correlation at one lag is washed out by
insignificant correlations at other lags

@ Test has a better power for m ~ InT*
@ Ljung-Box Q-test is also called as modified Box-Pierce test

*Tsay R. S. Analysis of Financial Time Series. 2nd Ed. Hoboken, NJ: John Wiley Sons, Inc., 2005.

A.T. Tpocdumos AHanuns aBTOKOPPENsiUNA BPEMEHHOrO psiga 26 / 33



Ljung-Box Q-Test
Statistical Tests for Autocorrelation

Behaviour of ACF and PACF for Stationary ARMA Processes

Process ACF PACF
White noise zero after lag 0 zero after lag 0

AR(p) dec:)z/:ot::]iir:”;ero zero after lag p

MA(q) zero after lag ¢ dec:zsot::;ir:”j/em
e | s | et

ACF and PACF of stationary ARMA process both decay to zero

The ARMA lags cannot be selected solely by looking at the ACF
and PACF but their maximum number can be roughly estimated
visually
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Ljung-Box Q-Test
Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes

For non-stationary process autocovariance function ¢(7) depends on
7 differently in different fragments of time series. It means that the
sample ACF and PACF cannot converge to the unique population
ACF and PACF

Signs of non-stationarity:

@ ACF does not decrease to zero or has a very slow decay

@ ACF has long downward sloping crossing zero line and
continuing decay

@ Linear decay of ACF or PACF

Common violations of stationarity are trending mean and
seasonality. Usually they can be determined visually from time
series plot

Some other types of non-stationarity are heteroscedasticity and
structural breaks
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Ljung-Box Q-Test

Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes. lllustration 1

Sample Autocorrelation Function

- T T
2
@
2 0
5051 1
E T 2 o
2 [ [ ]
o 0
a
£
»
05 I I I I I I I I I
0 2 4 & 8 10 12 14 16 18 20
Lag
8 . Sample Partial Autocorrelation Function
a
o
so0s5f 4
Z 2
2, [ o ¢, ¢t +TetT%
£ T [ 11
L]
2
E 05 I I I I I I I I I
w0 2 4 6 g8 10 12 14 16 18 20
Lag

I. Tpodbumos AHanus aBToKOppensALuuii BpPEMEHHOrO psifa 29 /33



Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes.

Ljung-Box Q-Test

Illustration 2

Log tranformed training data
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Ljung-Box Q-Test
Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes. lllustration 3

Log transformed and differenced data
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Ljung-Box Q-Test
Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes. lllustration 4

2
|

ALCF
00 02 D4 06 0 10
1 1

.

.

1

.

1

!
I

1

1
47
i
h—
-
—
S

:

1

1

.

S

.

1
L
L

1

1
_;_

1

1
L

1

:
L
h—
H—
—
L

!

1

o 5 10 15 20 25
.
5 3
i |
£ = Jodoooooos T e Tt et ks e L e ettt et -r=q4------
=) o ‘,_.{_____' _____________________ '__J.__
o 5 1 15 20 25

A.T. Tpocdumos AHanuns aBTOKOPPENsiUNA BPEMEHHOrO psiga 32 /33



ACF and PACF
ACF and PACF of AR, MA and ARMA Processes Ljung-Box Q-Test

Statistical Tests for Autocorrelation

ACF and PACF for Non-Stationary Processes. lllustration 5
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