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AR Processes AR(1) Process
Autoregressive Operator
Causality and Stationarity

Autoregressive Process

Definition

Discrete-time autoregressive process of order p (AR(p) process)
{Y;,t =0,1,...} is defined as:

Yi=c+dYii+dYi o+ ..+ oY pte, t>p

where {e;,t = 0,1, ...} is a discrete-time white noise and
¢, 1, ..., Pp are constants

For AR(p) process {Y;,t = 0,1, ...} the initial conditions
Y0, ..., Yp—1 must be determined

The process {e;,t = 0,1,...} is called innovation process and it

usually is a Gaussian white noise with zero mean and variance o

Y; depends only on current and previous innovations
€¢,Et—1,E¢—9,... and for any s > ¢ the Y; and ¢, are independent
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AR(1) Process

AR(1) process:
Yi=c+ oY1 +e

Backward substitution:

Yi=ct+ Y1 +e
=c+oi(c+p1Yio+e1) + e
=ct+oi(c+ p1(c+P1Yig+e2)+e—1) e =...=
=c(l+dr1+¢i+..+7 )+ (e + dreim1 + ... + ¢ e1) + ¢h Yo

t—1 t—1
=) P+ e+ Yo
=0 =0

Y; depends on all previous random variables 4,5,_1,&4_9, ... and
initial state Y}
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Stability of AR(1) Process

t—1 t—1
AR(1) process: Y; = CZ P+ Zﬂﬁgtfi + 1Y
i=0 i=0
° |p1] <1
. =
Y, = - + E dler—i + gbﬁYO (stable)
R
o le = 1:

t
Y = Z(c+ g;) + Yy (unstable, it's a random walk)
i=1
(4] ‘¢1| > 1:
t—1
The sum Z ¢ explodes exponentially (unstable)
i=0



AR Processes AR(1) Process
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Stationary Form of AR(1) Process

For |¢1] < 1: ¢{Yy — 0 as t grows, and the effect of initial
condition Yy on Y; will be small:

t—1 i1
c ; ‘ '
Y, = + 3 e+ Yo e p+ Y Bl
1—¢ — i=0
c
where p =
1—¢1

“Infinite history” version of AR(1)-process:
e .
Vi=p+ ) dier
=0

It is stationary form of AR(1)-process (after the transient effect of
initial condition Yp)
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Expectation of AR(1) Process with |¢| <1
AR(1) process in stationary form:

C

1—¢1

oo
Yi=c+p1Yio1+e =M+Z¢é5t—i; u=
i=0

M[Y;] = M

oo
p+ Z Pt
=0

Replacing ¢ with p(1 — ¢1) the process can be written w.r.t.
deviations from the mean:

YVi=pl—¢1)+ o1Yio1 + &

Yi—p=0¢1(Yeie1 — p) + e
Yi=¢1Yio1+e

=p+ Y A M) =p
=0

where Y, = Y; — 4 is a centered random variable Y;,t =0, 1, ...
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AR Processes AR(1) Process
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Autocovariance of AR(1) Process with |¢;| <1

o0 o0
(47 = M~ 00— ] =3 o]
i=0 i=0
[ oo ' 71 ' ©
=M > die <Z $ieririt Y ¢l15t+7——z’>]
Li=0 i=0 i=r
[ oo ' T—1 ' 00 ,
=M Z PiEt—i <Z P1Et4r—i + Z (ZSI—HEt—i)]
Li=0 i=0 i=0

[ oo T—1
=M | Y e Y ieriri| + SIM[(Y: — p)’]
Li=0 1=0
=0+ ¢1D[Y] = oD Z¢Z15t—i] = IW
i=0 1

Autocovariance depends only on time shift 7
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Autocovariance of AR(1) Process with |¢;| < 1. Notes

For AR(1) process with |¢1| < 1 the autocovariance function

0.2

1— ¢}

decreases to zero geometrically with factor ¢1:

e(t) = cov(t,t + 1) = ¢ = ¢re(t — 1)

cov(t,t+7)—0, T— 00
but never equals to zero ¢(7) # 0 for all 7 =0, 1, ...

0 0< P <1:
y¢ is similar to y;_1 due to the positive dependence, thus the
graph of the time series evolves smoothly

0o —1< ¢ <O
y¢ in general is the opposite sign of y;_1, thus the graph shows
many changes of signs
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Stationarity of AR(1) Process

° |p1] < 1:
c o?
M[Y;] = e p, cov(t,t+71)=c(r)= (ﬂl—i(b%
= {Y;} is WSS process
° |p1| =1

M[Yy] = ct = 00, cov(t,t +7) =0 — 00, t— 0
= {Y;} is non-stationary process (random walk)
° |p1| > 1t
M[Y;] = o0, D[V} = 0, t— 0

= {Y;} is non-stationary exploding process
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AR(1) Processes. Examples

¢=-0.9 $=0
4
1
2
0
0 X
2 2.
0 50 100 0 50 100
¢=0.5 ¢=
1 0
-1
0 27
-3
-1 4
5+
-2
0 50 100 0 50 100
Time Time

A.T. Tpocbumos ARMA-npouecch!

10 / 69



AR Processes AR(1) Process
Autoregressive Operator
Causality and Stationarity

Lag Operator

Definition

Lag (back-shift) operator L applied to random variable Y; from
discrete-time process {Y;} is defined as:

LY; =Y

Lag operator can be applied multiple times:
L*Y; = L(LY;) = LY, 1 =Y 5

LY, =Yy,

The inverse operator L™ is a forward-shift operator such that
L~'L =1, where 1 is identity operator:

YV, =1V, = L7 'LY; = L7V
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Autoregressive Operator

AR(p) process:
Yi=c+oYia+..+0Yp+ey

In operator form (using the lag operator L):

Vi—¢1Yin— .. —pYrp=cte
(1—¢1L—...—¢pLP)Yy =c+e
H(L)Y; =c+e
where ¢(L) =1 — ¢ L — ... — ¢, LP is called as characteristic

polynomial (or autoregressive operator) of AR(p) process

The autoregressive operator ¢(L) can be viewed as a whitening
operator. When applied to process {Y;} it gives white noise {e;}

The characteristic equation of AR(p) process:
1— g1z — oz — ... — dp’ =0
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Inverse Autoregressive Operator of AR(1) Process

“Infinite history” version of AR(1) process can be derived from its
operator form:
(I-¢l)Y,=c+e

Y, = (1—¢1L) e+ &)

Let’s rewrite inverse operator (1 — ¢1L)~! using series expansion:

(1—¢1L)7! =1+ L+¢iL%+ ... (|¢1] <1)

T 1-iL

Vi =1+ ¢ L+¢L%+..)(c+ep)
=C —|— Et + ¢1(C + Et_l) + (b%(c + Et—Q) +

o0 o0
c . .
= 1= & + E PiEt—i = p+ E PiEi—i
i=0 =0
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Look-Forward Form of AR(1) Process

The series expansion of inverse autoregressive operator (1 — ¢;L)~!
can be applied only if |[¢1| < 1

How to construct “infinite history” version of AR(1)-process
Y =c+ ¢1Yi—1 + ¢ for ] > 17

Let's rewrite AR(1)-process in look-forward form:

c 1 1
T e T g
Vi1 =+ Y+ &
where i ) i
¢1 = rn lp1] <1
- c - 1
C:_E’ st:—aet
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Stationary Form of AR(1)-process with |¢;| > 1

AR(1)-process in look-forward form:
V; =+ ¢1Vig1 + G

To solve this process we use a forward-shift operator FF = L~1:
(1- leF)Yt =C+ét

As soon as |¢y] < 1:

Vi=(1 - F)  e+&41) =1+ F +G1F>+ ) (6 + i)
Gt Epr + D1(E+ Erga) + H(E+ 5t+3) + ..

g 1
—1_(;514—72(1)15#1 1_¢1 Z¢1 Et+i

=1

Y; depends on all future innovations ;1 1,&49, ...
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Causality of AR Process

Definition

The AR process {Y;} is called causal if it has a stationary
representation (in terms of the white noise {£;}) such that ¥;
depends only on e, s < t, and doesn't depend on &, s > ¢, for all
t=0,1,...

Non-causal processes are practically useless. For non-causal process
it's necessary to know the future values €441, &9, ... to calculate ¥,

o0
AR(1)-process with |¢1]| < 1 is causal: Y; = p + Z Pieri
i=0

oo
AR(1)-process with |¢1]| > 1 is non-causal: Y; = p — Z b7 et
i=1

AR(1)-process with |¢1]| = 1 doesn’t have stationary representation
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Formal Definition of Causality

The AR(p) process ¢(L)Y; = ¢ + €4, where

H(L) =1—¢1L — ¢poL? — ... — ppLP
is causal if its inverse autoregressive operator

Y(L) = ¢ HL) =1+ 1L+ pl® + ...

oo
has absolutely summable coefficients > || < .
i=0

Absolute summability of {11, 2, ...} implies that Y; will be finite:

Vi=v9(L)(cte)=pn+Y thieri<oo (f=1)
1=0
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Causality of AR(1) Process
Autoregressive operator of AR(1) process:
¢(L)=1-¢1L
Inverse autoregressive operator:
V(L) =14 ¢1L+ L + ...
Coefficients g = 1, 91 = ¢1, P2 = ¢3, ...

° |p1] < 1: 1+!¢1|+|¢1|2+...:% < 00
= AR(1) process is causal

° |p1| > 1: 1+ |p1| + |¢1!2 +...—= 00
= AR(1) process is non-causal

@ |¢1] = 1: AR(1) process doesn't have stationary representation
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Criterion of Stationarity and Causality

Theorem

The AR(p) process YV; = c+ ¢1Yi—1 + ... + ¢pYs—p + &4 is
stationary, causal and ergodic iff

|zil >1 Vi=1,..,p

where 21, ..., z;, are roots of its characteristic polynomial

d(z) =1—1z— ... — Pp2P

AR(p) process is stationary <> all roots lie outside the unit circle
For AR(1) process:
Characteristic polynomial: ¢(z) =1 — ¢y 2, its root z = ﬁ

Stationarity condition: ﬁ >1=|¢1| <1
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Factorization of Autoregressive Operator

Characteristic polynomial of AR(p) process:

o(2) = —sbpf[(z— 5) = —asszz ( - 1>
s fi-2)-f(-2)

i=1
If all roots |z;| > 1, @ =1, ..., p, then the inverse autoregressive
operator can be represented as
1 1

L)=¢ L) = -
L ey A— 11(1-2r)
i=1

1 1
:H<1+zL+22L2+...> =1+ L+ ol?+
(]

i=1 i
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Stationary Form of AR(p) Process

The coefficients 11, 19, ... can be obtained by imposing the
cancellation of powers of L in identity equation ¢(L)¢(L) = 1:

(L4+ 1L+ L? + ) (1 — 1L — oLl? — ... — ¢, LP) = 1
Y1 =1
o = Q191 + P2

k
Uk = G1h1 + Goth o+ + Ok = Y Gtk (Yo =1)
i=1

AR(p) process in operator form:
H(L)Y; = c+ &y
AR(p) process in stationary form:
o0
Yi=(L+ 1L +vol? + . )(c+e) = p+ Y thieri

1=0
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Expectation and Autocovariance of Stationary AR(p) Process

For stationary AR(p) process {Y};} the expectation
M[Y:] = = const for all t = 0,1, ...:

M[Yy] = ¢+ p1M[Yia] + ... + ¢pM[Yi—p] + Mey]

p=c+oip+ ...+ ¢ +0
c

1—¢1—...— ¢y
It can be shown that autocovariance function ¢(7) is

o) = ;Ai (;)T

)

0

where Ay, ..., A, are some constants and zy, ..., 2, are roots of
characteristic polynomial ¢(z)

For stable process all roots |z;| > 1= ¢(7) = 0,7 = o0
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Yule-Walker Equations

Autocovariances of stationary AR(p) process can be obtained using
Yule-Walker method. It consists in multiplying centered process by
Y;, Y;_q,... and taking expectations:

5}1‘, - d)]_?vt—]_ + ...+ (;Sp}’}t—p + Et

M[Y; Vi) = oiM[Y; Yy 1] + o 4 ¢pM[Y; Vi ] + M[Y; 2]
c(0) = gre(1) + ... + Gpe(p) + o
(1) =pre(t = 1)+ ...+ ¢ppe(t —p), k>0

The system of linear equations for 7 =1, ..., p is called as
Yule-Walker equations:

c(1) = ¢1¢(0) + pac(1) + ... + Ppc(p — 1)
c(2) = ¢1c(1) + ¢2c(0) + ... + Ppc(p — 2)

c(p) = p1c(p — 1) + ¢ac(p — 2) + ... + ¢pc(0)
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Yule-Walker Equations in Matrix Form
Defining:
c=(c(1),...,c(p))T s a vector of autocovariances

b= (d1, ...y qﬁp)T is a vector of autoregression coefficients

c(0) c(l)y ... elp—1)
R (1) c(0) ... clp—2)
cp—1) ce(p—2) ... ¢0)

is a matrix of autocovariances

Yule-Walker equations
Ro=c
can be used to determine autoregression parameters:
=Rl
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Yule-Walker Equations for AR(1) and AR(2) Processes
Yule-Walker equations for AR(1) process:
?;t = ﬁbl}}t—l + &t

c(0) = ¢re(1) + o2 o?
O=1"5

c(t) =¢re(r—=1), 7>0
Yule-Walker equations for AR(2) process:
i/;t = ¢157t—1 + ¢2Y/;€—2 + &t
(1) + ¢oc(2) + o2

(1) 4 ¢2c(0)
c(t) = ¢re(t — 1) + ¢poc(t—2), 7>0

¢1C ) 2 —
— bie . (o) = T (1= ¢2)(1+¢2)
C(l) - 216(0; + P2 (1) = (0) (1 —_ ¢1 — ¢2)(1 + ¢1 _ ¢)2)
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Ergodicity of AR(p) Process

Autocovariance function of stationary AR(p) process:

T T
1 A 1 T A 1
T;C<T><T;<Zmin> S et

Thus, stationary AR(p) process is mean-ergodic (by Slutsky's
theorem)

It can be shown that stationary AR(p) process is also
autocovariance-ergodic

If it is known that a real world process is stationary AR process
then it is ergodic. Just one realization is needed to estimate its
mean and covariance function
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AR(p) Processes. Examples

p=2 p=5
4
1
3
0 2
-1+ 1 [
50 100 150 200 50 100 150 200
p=10 p=15
14 3.5
3
0 25
-1+ 2
1.5
50 100 150 200 50 100 150 200
Time Time
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Moving Average Process

Discrete-time moving average process of order ¢ (MA(q) process)
{Y;,t =0,1,...} is defined as:
th:C+5t+015t—1+---+0q5t—q5 t:O,].,

where {e;,t = —q,—q + 1, ...} is a discrete-time white noise and
¢, 01, ...,04 are constants

The process {e;} is innovation process and it usually is a Gaussian
white noise with zero mean and variance o>

For MA(q) process {Y;,t = 0,1, ...} the innovations at time
moments —q, —q + 1, ..., —1 must be determined

Y; depends only on finite set of innovations e, ¢_1, ..., ¢ and for
any s <t—qors>ttheY; and 4 are independent
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Moving Average Operator

MA(q) process in operator form:
Yi=c+(1+6L+...+60,L%e =c+6(L)ey
where
O(L)=1+6,L+..+6,L7
is its characteristic polynomial (or moving average operator)

MA(q) process is always stationary, as it is a sum of stationary
processes

Expectation of MA(q) process: = M[Y;] =c forallt =0,1,...

Replacing ¢ with u the process {Y;,t = 0,1,...} can be written
w.r.t. deviations from the mean:

Y, =&+ b1ep—1 + ... + O4ct—q

where Y; = Y; — i is a centered random variable Y;,t =0, 1, ...
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Autocovariance of MA(g) process

Centered MA(q) process: Y, =¢; + 01601 + ... + O4ct—q
Multiplying this expression by Y;_,, 7 > 0, and taking
expectations, the autocovariances are obtained:

M[ﬁffz‘,fﬂ'] = M[stﬁfT] + 91M[Et,1ﬁ77} + ...+ eqM[gtqufth]

f/tff =¢ctr+0164 71+ ...+ 9q5t77'7q

(1462 + ... +02)02, T=0
c(1) =3 (0 + 0r101 + .. +0,0,—7)0%, T=1,..,q
0, 7>¢q
MA(q) process has exactly the first ¢ coefficients of the
autocovariance function different from zero

MA(q) processes are always mean-ergodic (by Slutsky's theorem).
It can be shown that they are also autocovariance-ergodic
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Autocovariance of MA(1) process

Centered MA(1) process: Y; = ¢; + 611

¢(0) = M[Y;Y;] = M[e,Vi] + 0:M[e;_1 Y]]
= Mlei(er + bher—1)] + 01 M[er—1 (et + b164-1)]
=02 4 hlo?

(1) = M[Y;Y;—1] = M[e; Y 1] + 01M[g1-1Y; 1]
= M[et(et—1 + O16¢—2)] + 1M[er—1(e4—1 + b161—2)]

= 910’2

¢(2) = M[Y;Y;_o] = Mg,V o] + 01 M[g4—1V; 5]
= M[Et(ét_Q + 91515—3)] + elM[Et_l(Et_Q + elEt_g)}
=0
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MA(q) Processes. Examples

Moving Average Operator
MA(1) Process
Invertibility of MA Process

0.5

-0.5

A.T. Tpocdumos

q=2
50 100 150 20

0
q=10
WWWWI
50 100 150 200
Time

q=5
1.5 ‘
1
0.5
0
-0.5
-1
50 100 150 200
q=15
1.5
1
0.5
0
-0.5
-1
50 100 150 200
Time

ARMA-npouecchi
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MA(1) Process

MA(1) process:

}/t =c+te+ 9151571
Y; depends only on current &; and previous £;_1 innovations
Let's rewrite it as a function of its previous values using backward

substitution of innovations:

ep=—c—bie 1 +Y;
Yi=c+e+bie1=ct+e+b0(—c—bieo+ Y )
=cHe+0(—c—0(—c—0ier3+Yi2)+Yi 1)
C(l — 01 + 9% — ) -+ (611/;5_1 - 9%1/;5_2 + ) — (—91)t€0 + &¢

t—1 t—1
=) (=01)" =) (=01)"Yiei — (=01)"e0 + &
=0 i=1

A.T. Tpocbumos ARMA-npouecch!
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AR(o0) Form of MA(1) Process

For |01| < 1: (—61)'ep — 0 as t grows, and the effect of initial
innovation £¢ on Y; will be small:

o

=) (-0)Yii+a

1=

&
1464

Y; =

It is infinite-order autoregressive form of MA(1) process (after the
transient effect of initial innovation)

Y; depends on all previous variables Y; _1,Y; o, ...

If |61] < 1 the effect of earlier variables Y;_; on Y; tends
geometrically to zero with ¢

If |#1] > 1 it produces the paradoxical situation in which the earlier
Y;_; the more effect it has on Y}
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MA Processes MA(1) Process
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Inverse Moving Average Operator of MA(1)-process
The AR(o0o)-form of MA(1) process can be derived from its

operator form:
Y;j =c+ (1 + 91[/)875

L+0L) (Y—c) =&
Let's rewrite operator (1 + 0;L)~! using series expansion:
(1+6,L) P =1-60L+67L%— ... (6] <1)
(1—0L+62L%— . )(Yi—c)=¢
(Vi —¢) + (=01 L+ 03L% — ) (Y; —¢) = &
Yi=c— (—L+603L% —.)(Y; —¢c) +&
=c+0,(Yio1—c) =03 (Yie2 —¢) + ... + &

c o0 )
- 3 (-0
1+6 2.:1( 1) Yii+ e
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Look-Forward Form of MA(1)-process

The series expansion of inverse moving average operator
(14 601L)~! can be applied only if |#1] < 1

How to construct AR(oco) form of MA(1) process
Y, =c+ ey + b1 for [01] > 17

Let's rewrite MA(1) process in look-forward form:

1 c 1
—Y,=—+ — _
o t 0, +91€t+€t 1
c 1 1
o =—— — —Y,
€t—1 0, 91€t+01 t
er1=—¢— 01 + Y,
where ) )
~ ~ C ~
0h=—, |bil<l, ¢=—, Y,=--Y,
1 o, \ 1| c 0, t o, t

A.T. Tpocbumos ARMA-npouecch!
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Invertibility of MA Process

Stationary Form of MA(1) Process with [6;| > 1

MA(1) process in look-forward form:
€1 = —C— élst + 57},

To solve this process we use a forward-shift operator FF = L~
(1+61F)e1 =Y, —¢

co1=(1+0,F) (Y, —&) = (1 — 6, F + 62F2 — )Y, — &)
=V, —é+ (=6, F + 02F> — ) (Y, - &)
Y, =¢— (= F +02F* — ) (Y, — &) 4+ 11
él(ﬁﬂ — &) = 03 (Vig2 — &) + . +e1

—Z —01) Y + et
i=1

1-|—91

Y; depends on all future random variables Y; 1, Y o, ...
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Invertibility of MA process

Definition

The MA process {Y;,t = 0,1, ...} is called invertible if its AR(c0)
representation is a causal function, i.e. Y; depends only on Y,
s < t, and doesn't depend on Ys, s > t, forall t =0,1,...

For non-invertible representation of MA process it is necessary to
know the future values y;11, yt+2, ... to calculate y;

MA(1) process with |61] < 1 is invertible:

o0

> (=00 Yisi+e

i=1
MA(1) process with |61] > 1 is non-invertible:

o0

C .
=——a =) (=) Vg + e
14671 ;
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Formal Definition of Invertibility

The MA(q) process Y; = ¢ + 0(L)ey, where

O(L) =1+ 0,L 4012 + ... +6,LP
is invertible if its inverse moving average operator

n(L)=0"YL)=1-—mL—mL?— ..

o0
has absolutely summable coefficients » |m;| < oo.
i=0

Absolute summability of {71, 7o, ...} implies that &, will be finite:

x
eg=mL) (Y, —c)=—-a+Y;, — ZmYH < 00
=1
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Invertibility of MA(1) Process

Moving average operator of MA(1) process:
(L) =1+6,L
Inverse average operator operator:
m(L)=1—60,L+61L% — ...

Coefficients mg = 1, m = —61, m = 9%7

e |0] < 1:
1
1+‘01|+‘91|2+~--:1_7’91‘<00

= MA(1) process is invertible
] ‘91‘ > 1:
14 101] + |61 + ... = 00
= MA(1) process is non-invertible
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Criterion of Invertibility

The MA(q) process Y; = ¢+ ¢ + 0164—1 + ... + 04644 is invertible
iff

‘Zz‘ >1 Vi=1,...,q

where z1, ..., z, are roots of its characteristic polynomial

0(2) =14 6012+ 0922 + ... + 0,27

MA(q) process is invertible < all roots lie outside the unit circle

For MA(1) process:
Characteristic polynomial: 8(z) =1 + 6y z, its root z = —%

Invertibility condition: |9711\ >1=161] <1
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Factorization of Moving Average Operator

Characteristic polynomial of MA(q) process:

0(z) = Gqﬁ(z —z) =0, f[zi (zZZ - 1>
i=1 i=1
_ Qq(l)qz]...zq}_{ <1 = j) =11 (1 - j)

i=1
If all roots |z;| > 1, i =1, ...,q, then the inverse moving average
operator can be represented as

1 1

1+ 6L+ +0,L0 12[ (1—5})

7(L) =6~YL)

1.1
:H<1+L+2L2+...> =1-mL—mL?— ..
. z z

{ i
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AR(o0) Form of MA(q) Process

The coefficients 71, w9, ... can be obtained by imposing the
cancellation of powers of L in identity equation 6(L)mw(L) = 1:

(L4+ 6L+ 0oL +..)(1 —mL — ... —mpLP) = 1
91 =T
0y = ™01 + 7o
k.
O =m0kt + T2bk—2 + ..+ e =Y _mibr_; (0 =1)
i=1

MA(q) process in operator form:
Yi=c+ 9(L)€t
MA(q) process in AR(o0) form:
eg=(0-mL-ml’+.)Yi—¢)=—i+Y— > mYi,

=1
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Ambiguity of MA(gq) Processes

Consider two MA(1) processes:
1
Y}Z&—Fgfftfl, EtNN(O,25),t€Z

Zy = €4 + ber_1, EtNN(O,l),tGZ

These processes have different representations but they are
indistinguishable:
MY =M[Z] =0

2%, =0,
cy(T)=cz(t) =<5, 71=1,
0, 7>1,

It can be shown that for MA(q) process always exists invertible
representation. It can be obtained by inverting the roots of
characteristic polynomial that are smaller than 1

It's preferable to choose invertible representation

A.T. Tpocbumos ARMA-npouecch!
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AR(p) Process. Summary

Model Yi=c+dYia+ ..+ oY p+er
Characteristic
polynomial HL)=1=dl ... = gplL”
Operator form (L)Y, =c+ey
Y(L)=¢ YL) =1+ ¢1L+9aLl® + ...,
Inverse
operator Y = 1Pr_1+ ... + qbp?/Jk»_p, k=1,2,..,
Yo=1, tp=0, k<0
MA(c0) form Y; = ¢ L) (c+ &)
Stationarity roots |z;| >1 Vi=1,...,p
Causality roots |z;| >1 Vi=1,...,p
Inversibility Always
Ergodicity roots |z;| >1 Vi=1,..,p
Memory Infinite, remembers all previous innovations
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MA(g) Process. Summary

Model Yi=c+e+b0iei-1+ ... +04e—
Characterl.stlc O(L) =1+ 0uL + .. + 0, L9
polynomial 4
Operator form Yi=c+0(L)e
7T(L) = 671([;) =1-—mL— 7T2L2 —
Inverse
operator 0 = m0,_1 +-~-+7Tq0k—q> k=1,2,..,
Op=1, 6,=0, k<O
AR(c0) form e =0"1(L)(Y; —¢)
Stationarity Always
Causality Always
Inversibility roots |z;| >1 Vi=1,...,q
Ergodicity Always
Memory Finite, remembers only ¢ previous innovations

A.T. Tpocbumos ARMA-npouecch!
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Wold’s Theorem

The AR and MA processes are specific cases of a general
representation of stationary processes obtained by Wold

Theorem (Wold, 1938)

Let {Y;,t =0,1,...} be WSS process with finite mean u that does
not contain deterministic component. Then it can be written as a

linear function of zero-mean uncorrelated random variables
{6,5, t e Z}

o
Yi=p+ Z Vi€t—i
i=0

where M[g;] = 0, D[ey] = 02, cov(ey,er—r) =0 forallt >0, 7> 1

v

If the process {Y;,t = 0,1, ...} contains deterministic component
(trend) it should be extracted firstly
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Wold’s Theorem. Notes

@ Wold's theorem guarantees that any WSS process has a linear
representation

@ The random variables {s;,t € Z} actually is a white noise
process, thus Wold's theorem guarantees that any WSS
process can be represented in MA(oo) form, which is called as
general linear representation of WSS process

o If the process {Y;,t = 0,1, ...} can be represented as a
function of Gaussian white noise {g;,t = 0,1, ...}, it will be
Gaussian process and the weak coincides with strict stationarity

@ Usually 19 = 1 assumed

o If the coefficients v; are all zeros after lag ¢ then the general
linear representation reduces to MA(q) form:

q
Yi=p+ E Vi€i—;
i=0
ARMA-npouecce 48 / 69
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Expectation and Autocovariance of WSS Process

Expectation:
M[Y] = u+2m ] = u
i=0
Variance:
D[Y] = u—i—zwift—i] 20221/%‘2
=0 i=0

o
The process {Y;,t = 0,1,...} will have finite variance if " 9? < oo

i=0
Autocovariance:

Y = p+ Yo + V1661 + oo FUrgi s + ..
Yir = p+doci 7 + 16017 +2ct2 1 + ...

o0
o(m) =M[(Y; = ) (Yier — )] = 07> thithisr
=0
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AR(o0) and MA(oo) Representations in Operator Form
Wold's theorem gives MA(o0) representation of WSS process {Y;}:
Yi=p+9y(L)e

where
Y(L) =1+ 1L+ o L* + ..

Inverse representation is AR(co):

VTHL)(Y: — ) = e

where
v N =n(l)=1—-mL—mL?*— ..

(1 —mL—mL?— . )Y —pu) = ¢
(Yi—p) — (mL+mLl?+..) (Y —p) = &
Vi =p+ (mL+mLl?+..)(Y, — p) + &
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Coefficients of AR(c0) and MA(o0) Representations

The coefficients 71, w9, ... can be obtained by imposing the
cancellation of powers of L in identity equation (L) (L) = 1:

(1 + 1L+ pol? 4+ ..)(1 —mL — ... —mpLP) =1
P =m
Yo = mthy + T2

k
Yk =Tkt + Tk + b T = Y mhe (o = 1)
=1

WSS process {Y;} in MA(c0) form: Y; = p+ sz‘gt—i
i=0

WSS process {Y;} in AR(c0) form: Y, = i + Zﬂ'iyl‘fi + &
i=1
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MA(cc) Representation of Stationary AR(p) Process

Note that the lag operator ¢(L) of stationary AR(p) process has
finite number of terms:

S(L) =1—¢1L — ... — ¢pLP
but the inverse operator 1(L) has infinite, i.e. it's MA(oc0) process:
W(L) = ¢ (L) = L+ L+ l? + .
For example, AR(1) process
Yi=c+pYio1+e, |o1]<1

has MA(o0) representation:

oo
Yi=p+ Z Plet—i = p+ et + dpree—1 + dler—o + ...
i=0
Here 1o = 1, ¥1 = ¢1, 12 = ¢?, ... is infinite sequence but it is
characterized by only one parameter ¢
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AR(p), MA(g) and General Linear Process

The AR(p) processes can be considered as particular case of the
general linear process characterized by the facts that:
@ all MA coefficients v; are different from zero
@ there are restrictions on the 1);, that depend on the order of
the process
o coefficients 1); satisfy the sequence

k
Uk = $1tn_1 + Gatha + .t dp =D St (o =1)
=1

with initial conditions that depend on the order of the process

The MA(q) processes can be considered as particular case of the
general linear process characterized by the fact that:

@ all MA coefficients v); are zeros after lag g
@ MA coefficients 1); up to lag ¢ can be arbitrary
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Autoregressive Moving Average Process

Could we combine these properties and allow us to represent the
processes whose first ¢ coefficients can be arbitrary, whereas the
following ones decay according to simple rule?

Definition

Discrete-time autoregressive moving average process of AR order p
and MA order ¢ (ARMA(p,q) process) {Y;,t =0,1,...} is
Yi=ct+dYia+.. 0 pter+0ie 1+ ... +046g, t>p

where {&;,t = —q, —q + 1, ...} is a discrete-time white noise and c,
@15y Pp, 01, ...,04 are constants

Y; depends only on current and previous innovations
€¢,Et—1,E¢—9,... and for any s > ¢ the Y; and ¢, are independent
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AR, MA and ARMA Processes

AR and MA processes are particular cases of ARMA process:
AR(p) = ARM A(p,0)

MA(q) = ARMA(0, q)

The AR part of ARMA process implies the MA(oo) structure and
imposes restrictions on the coefficients 1);

The MA part of ARMA process modifies first ¢ coefficients 1); in
MA(o0) representation and makes them arbitrary

In practice it's convenient to use a few number of parameters to
model the real time series. If parameters in MA(oo) representation
have some structure, the AR part should be included to the model
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Poles and Zeros of ARMA Process
ARMA(p,q) process in operator form:
1—¢p1L—...—ppLP)Yy=c+(1+6L+..+6,L%e

d(L)Y: =c+0(L)ey
where
(L) =1—¢L—...— ¢,LP
O(L)=1+6,L+..+6,L7
The lag operator polynomials can be factorized:
p 1 q 1
o(L) = 1;[1 <1 - piL) , 0(L) = 1;[1 (1 - ZiL)

Roots p1, ..., pp of ¢(z) are called as poles of ARMA process

Roots z1, ..., z; of 8(z) are called as zeros of ARMA process

A.T. Tpocbumos ARMA-npouecch!
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ARMA Parameters Redundancy

If Y; = et then £(L)Y;: = &(L)et, where (L) is some lag operator
polynomial

Example 1:
W(L)=1-05L = Y;—05Y, 1 =c —0.55_1
It looks like ARMA(1,1) but in fact, it is AR(0) process Y; = ¢;
Example 2:
Y, =0.4Y;1 +0.45Y; 9 + &4 + 41 + 0.25e4
¢(2) =1 —0.4z —0.452% = (1 4+ 0.52)(1 — 0.9z)
0(z) =1+ 2+ 0.252% = (14 0.52)>

Removing the common term (1 + 0.5z) gives the reduced
ARMA(1,1) process

Y; =0.9Y;1 + € +0.5541
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AR(o0) and MA(oo) Representations in Operator Form

MA(o0) representation (if inverse AR operator ¢~ !(L) exists):

Yim 7 D) (e (D)) = ok By e =k UL

where

B c

S P S —
0L 2

AR(c0) representation (if inverse MA operator §~1(L) exists):

L

o= ) (i = ) = m(L) (Y~ )
where I
(L) = Z((L; =1-mL—mLl?— ..
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Stationarity and Invertibility of ARMA Process

Assume that ¢(L) and #(L) have no common factors

ARMA(p,q) as MA(o0) process

MA(o0) representation (ARMA process as a sum of stationary
white noise process) exists if ¢~ 1(L) exists

ARMA(p,q) process is stationary if its AR part is stationary, i.e. all
roots of ¢(L) are outside of unit circle
ARMA(p,q) as AR(c0) process

AR(c0) representation (white noise process as a sum of ARMA
process) exists if 071(L) exists

ARMA(p,q) process is invertible if its MA part is invertible, i.e. all
roots of A(L) are outside of unit circle

Poles correspond to stationarity, zeros correspond to invertibility
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Expectation of ARMA Process

ARMA(p,q) process:
Yi=c+ gV + ...+ pter+ 01601+ ... + 04604
For stationary ARMA process:
M[Yi] = ¢+ o1 M[Yia] + ... + ¢pM[V; ]

c
[¥:] 1—¢1—...— &y
Replacing ¢ with (1 — ¢1 — ... — ¢;) the process can be written
w.r.t. deviations from the mean:
Vi=p(l—¢1— . —@p) + 01Yio1 +.9pYip + 0+ o+ 0gg1g

Yi—p=01(Yi1 —p) + ..+ p(Yip — ) et + .. + 06t
YVi=¢1Yi1+ 1Yo+ + o+ O4ei—q

where Y, = Y; — 4 is a centered random variable Y;,t =0, 1, ...
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Autocovariance of ARMA Process

Centered ARMA(p,q) process:
Vi=¢1Yia 4.+ &Y pte+bie 1+ ..+ 0,8

To calculate the autocovariances we multiply ARMA process by
Y;—- and take expectations (Yule-Walker's method):

c(1) =p1e(t — 1) + ... + dpe(T — p)
+ M[Yi_req] + OM[Yi 1] + oo 4+ O,M[Yi s ]

For 7 > ¢ all the terms GiM[Yt,Tst,i] are cancelled:

c(r) —pre(t —1) — ... — dpe(t —p) =0
In operator form:
¢(L)e(r) =0, 7>4q

= autocovariances for 7 > ¢ follow a decay dictated by the
autoregressive part ¢(L)
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ARMA(1,1) Process

ARMA(1,1) process:

Yi=c+ oY1 +e+ e
In operator form:

(1—¢p1L)YYr=c+ (1+61L)e
AR operator: ¢(L) =1—¢1L, pole: z= %
MA operator: (L) =1+ 61L, zero: z = —%
|p1] < 1 = {Y;} is stationary, [01] < 1 = {Y;} is invertible

Expectation:
&

T 1-¢

i
Centered process:
Y/(t) = Y1 + e+ bieiq

where V; = Y; —
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Autocovariance of ARMA(1,1) Process

To calculate the autocovariances we multiply Y; process by Y;_,
and take expectations:

i/t = ¢1}~/t71 + e+ O0hei—1
M[Y;Y, ;] = p1M[Yi1Yior] + M[erYy ] + 01 M[g_1Y;,]
(1) = pre(r — 1) + M[e, ;-] + 61 M[es 1Y} ;]

For 7 =0:
MleYi—r] = M[etVi] = Met(¢1Yi—1 + &1 + O161-1)] = M[e}] = o2
Mer—1Yir] = Me;1Yi] = Mlgg—1(1Yio1 + &t + O164-1)]

= ¢ M[gr1Yi1] + 1 M[el ] = ¢10? + 0107

= (¢1 + 01)0”
c(0) = ¢pre(—1) + o2+ 01(p1 + 91)02 = ¢1c(1)+ (1 +¢1601 + 0%)02
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Autocovariance of ARMA(1,1) Process

For m=1: ~ 3
M[é“txs—r} = M[EtY;t—l] =0

Mle;—1Yir] = Mg;—1Y; 1] = o*
C(l) = (2516(0) + 910’2

Substituting ¢(1) in the expression for ¢(0):

c(0) = ¢1c(1)+(1+¢101+67) 0% = ¢1($1c(0)+010%)+(1+¢101+67 )0

we obtain o 2
_1+2¢10: 07
c(0) = T o
(1) = G1c(0) + 0102 = LE AN A)

1— o7
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Autocovariance of ARMA(1,1) Process

For 7 > 1: .
M[EthfT} =0

M[Etflffth] =0

(1) = dre(r — 1)
The autocovariances ¢(7) for 7 =0, ..., ¢ of ARMA(p,q) process
can have a complex structure determined by the MA and AR parts

For 7 > ¢ the autocovariances depend only on previous
autocovariances. In general case it's a mixture of exponentials and
sinusoids, determined exclusively by the AR part

If 1 = —61: ¢(L) and (L) have common root, thus the
ARMA(1,1) process reduces to AR(0) process:

(1= ¢1L)Y; = (1= ¢1L)e;
Vi=¢, ¢0)=0% ¢(r)=0 ¥Yr>0
ARMA-npouecch 65 / 69



General Linear Process
Autoregressive Moving Average Process
ARMA Processes Sum of Stationary Processes

Sum of AR Processes

One reason that explains why the ARMA processes are frequently
found in practice is that summing AR processes results in an
ARMA process

For example, let's mix independent AR(1) and AR(0) processes:
Y; = ¢1Yi1+¢e (AR(1) process)

Xt =w  (AR(0) process)

The resulting process Z; = Y; + X; can be interpreted as the result
of observing an AR(1) process {Y;} with a certain measurement
error {X;}

Expectation:
M[Z;] = M[Y; + Xi] = M[Y;] = 0
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Sum of AR Processes and ARMA Process

Variance:

cz(0) = D[Z] = D[Y; + Xi] = D[Y3] + 02 = ¢y (0) + o2

Autocovariance:
cz(1) = M[Zi 2] = M[(Yi+X)(Yir+Xi7)] = ey (1) = ¢1ey (0)
Substituting cy (0) from the expression for variance:
cz(1) = ¢7(cz2(0) — o) = drez(T — 1)
For 7 = 1: c¢z(1) = ¢1c2(0) — 102
It was shown that autocovariance ¢(7) of ARMA(1,1) process:
c(1) = ¢1¢(0) + 0102, (1) = dre(r —1), T>1

So we conclude that process {Z;} follows ARMA(1,1) model with
AR parameter equal to ¢; and MA parameter is determined by ¢
and variances ¢ and o2
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Sum of Stationary Processes and ARMA Process

It can be shown that:
@ any sum of independent AR processes is ARMA process:

AR(p) + AR(q) = ARMA(p + q, max(p, q))
particularly:
AR(p) + AR(0) = ARM A(p, p)
@ any sum of independent MA processes is MA process:
MA(q1) + M A(g2) = M A(max(q1, q2))
@ any sum of independent ARMA processes is ARMA process:
ARMA(p1,q1) + ARM A(p2,q2) = ARM A(a, b)

where a < p; + p2, b < max(p; + q1,p2 + ¢2)
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Sum of Stationary Processes and ARMA Process. Notes

@ Whenever we observe processes that are the sum of others,

and some of them have an AR structure, we expect to observe
ARMA processes

@ Under certain conditions any sum of stochastic processes tends
to be ARMA process. It justifies the popularity of ARMA
models for time series modelling

@ In practice many real series are approximated well by means of
AR or MA processes. It is due to cancellation of similar roots
of AR and MA characteristic polynomials of ARMA model

@ If it is known that a real world process is stationary ARMA
process then it is ergodic. Just one realization is needed to
estimate its mean and autocovariance function
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