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Why Markov Processes?

Why Markov processes are important?

Many analytical methods and solutions are developed only for
Markov processes
The usual way to solve problems in signal processing is adjust
them to some Markov models
Markov processes are adequate for many real-life phenomena
Furthermore, some real-life processes can be approximated by
Markov processes

A Markov process is a stochastic process that satisfies the Markov
property, which means that the past and future are independent
when the present is known

This means that if one knows the current state of the process, then
no additional information of its past states is required to make the
best possible prediction of its future
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Formal Definition of Markov Process

Definition
The random process {𝑋(𝑡), 𝑡 ∈ 𝒯 } is called Markov process if for
any 𝑛 > 2 and any time moments 𝑡0 < 𝑡1 < ... < 𝑡𝑛 ∈ 𝒯 the
conditional CDF of “last” random variable 𝑋(𝑡𝑛) given the fixed
values of 𝑋(𝑡0), ..., 𝑋(𝑡𝑛−1) depends only on 𝑋(𝑡𝑛−1) :

𝑃 (𝑋(𝑡𝑛) < 𝑥𝑛 | 𝑋(𝑡𝑛−1) = 𝑥𝑛−1 & ... & 𝑋(𝑡0) = 𝑥0)

= 𝑃 (𝑋(𝑡𝑛) < 𝑥𝑛 | 𝑋(𝑡𝑛−1) = 𝑥𝑛−1)

For 𝑛 = 3 time moments 𝑡0 < 𝑡1 < 𝑡2:

𝑃 (𝑋(𝑡2) < 𝑥2 | 𝑋(𝑡1) = 𝑥1 & 𝑋(𝑡0) = 𝑥0)

= 𝑃 (𝑋(𝑡2) < 𝑥2 | 𝑋(𝑡1) = 𝑥1)
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Examples of Markov Time Series

IID time series
Given 𝑋(𝑡) the random variable 𝑋(𝑡+ 𝜏) depends neither on
the past nor on 𝑋(𝑡) for all 𝑡 ∈ 𝒯 and 𝜏 > 0

Particularly, strongly white time series is Markov time series
SII time series

{𝑋(𝑡), 𝑡 = 0, 1, ...} is SII time series ⇔ 𝑋(𝑡) =
𝑡∑︀

𝑖=1
𝑈(𝑖),

where {𝑈(𝑡), 𝑡 = 1, 2, ...} is IID time series
Given 𝑋(𝑡) the random variable

𝑋(𝑡+ 𝜏) =

𝑡+𝜏∑︁
𝑖=1

𝑈(𝑖) = 𝑋(𝑡) +

𝑡+𝜏∑︁
𝑖=𝑡+1

𝑈(𝑖)

doesn’t depend on the past before time 𝑡

Particularly, Bernoulli counting process and simple random
walk are Markov time series
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Example of Non-Markov Time Series

Consider Gaussian time series {𝑋(𝑡), 𝑡 = 1, 2, ...}:

𝑋(𝑡) = 𝑋(𝑡− 1)−𝑋(𝑡− 2) + 𝑈(𝑡)

𝑋(1) = 𝑈(1), 𝑋(2) = 𝑈(2)

where 𝑈 is a Gaussian white noise 𝑁(0, 1)

For time moments 𝑡− 2, 𝑡− 1, 𝑡:

𝑃 (𝑋(𝑡) < 𝑥 | 𝑋(𝑡− 1) = 𝑥1 & 𝑋(𝑡− 2) = 𝑥2)

̸= 𝑃 (𝑋(𝑡) < 𝑥 | 𝑋(𝑡− 1) = 𝑥1)

The distribution 𝑋(𝑡)|𝑋(𝑡−1)=𝑥1
depends on 𝑥2

It is insufficient to know only the current state 𝑋(𝑡) = 𝑥 to deduce
statistical properties of the future random variable 𝑋(𝑡+ 1). It is
also necessary to know the past before time moment 𝑡

Therefore the time series 𝑋 is non-Markovian
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Markov Property. Notes

The Markov property is referred to as the “memorylessness”
property
For Markov process its future (i.e., the distribution of future
outcomes) only depends on the current state, but not its past
We don’t need to know the full history of states to know what
will happen next, just the current one
The Markov property is desired property in predictive
modelling tasks
The Markov property leads to great reduction of the number
of parameters when studying such processes
Some non-Markovian processes can be transformed to Markov
ones in high dimensional spaces
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Markov Chain

Consider a process 𝑋, 𝑋(𝑡) ∈ 𝒳 , 𝑡 ∈ 𝒯

The index set 𝒯 and the state space 𝒳 can be discrete (countable
or finite) or continuous sets
The discrete-time process {𝑋(𝑡), 𝑡 = 0, 1, ...} is a sequence of
random variables 𝑋(0), 𝑋(1), ... so we’ll denote it as 𝑋0, 𝑋1, ...,
where 𝑋𝑛 ≡ 𝑋(𝑛), 𝑛 = 0, 1, ...

Definition
Markov chain is a discrete-time process {𝑋𝑛, 𝑛 = 0, 1, ...} in
discrete state space 𝒳 = 𝑆 ⊆ {1, 2, ...} , such that

𝑃 (𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖 & 𝑋𝑛−1 = 𝑖𝑛−1 & ... & 𝑋0 = 𝑖0)

= 𝑃 (𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖)

for all 𝑛 and all 𝑖0, 𝑖1, ..., 𝑖𝑛−1, 𝑖, 𝑗 ∈ 𝑆
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Markov Chain. Notes

Sometimes the state space 𝑆 of Markov chain 𝑋 is considered
to be continuous but many applications of Markov chains
employ finite or countably infinite state spaces
Markov chain is a discrete-time Markov process (in discrete or
continuous state space)
The state space 𝑆 can be set of arbitrary objects (e.g. words,
moods, actions, etc.), 𝑆 = {𝑠1, 𝑠2, ...}. Some examples:

𝑆 = {sleep, eat, excercise}
𝑆 = {sunny, rainy}
𝑆 = {bear market, bull market}

A IID time series (for example, a series of coin flips) satisfies
the formal definition of a Markov chain. However, the theory is
usually applied only when the probability distribution of the
next step depends non-trivially on the current state
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State Transition Probabilities and Diagram

Let the state space 𝑆 = {𝑠1, ..., 𝑠𝑘}, where 𝑘 is a number of states

The probabilities

𝑝𝑖𝑗 = 𝑃 (𝑋𝑛+1 = 𝑠𝑗 | 𝑋𝑛 = 𝑠𝑖), 𝑖, 𝑗 = 1, ..., 𝑘

are called state transition probabilities

Transition probability 𝑝𝑖𝑗 from state 𝑠𝑖 to state 𝑠𝑗 depends only on
𝑖 and 𝑗 and doesn’t depend on time step 𝑛, 𝑖, 𝑗 = 1, ..., 𝑘

A Markov chain is usually shown by a state transition diagram

𝑠𝑖 𝑠𝑗

𝑝𝑖𝑗

𝑝𝑗𝑖
𝑝𝑖𝑖 𝑝𝑗𝑗

А.Г. Трофимов Марковские процессы 9 / 54



Statistical Description of Markov Processes
Analysis of Markov Chains

Markov Property
Transition Probabilities
Stationary and Limiting Distributions

Transition Probability Matrix

Transition probabilities are arranged into the state transition matrix
or transition probability matrix:

𝑃 =

⎛⎜⎜⎝
𝑝11 𝑝12 ... 𝑝1𝑘
𝑝21 𝑝22 ... 𝑝2𝑘
... ... ... ...
𝑝𝑘1 𝑝𝑘2 ... 𝑝𝑘𝑘

⎞⎟⎟⎠
where

𝑝𝑖𝑗 = 𝑃 (𝑠𝑗 | 𝑠𝑖) = 𝑃 (𝑋𝑛+1 = 𝑠𝑗 | 𝑋𝑛 = 𝑠𝑖), 𝑖, 𝑗 = 1, ..., 𝑘

The sum of elements in each row is equal to 1:

𝑘∑︁
𝑗=1

𝑝𝑖𝑗 =
𝑘∑︁

𝑗=1

𝑃 (𝑠𝑗 | 𝑠𝑖) = 1, 𝑖 = 1, ..., 𝑘

А.Г. Трофимов Марковские процессы 10 / 54



Statistical Description of Markov Processes
Analysis of Markov Chains

Markov Property
Transition Probabilities
Stationary and Limiting Distributions

𝑛-Step Transition Probabilities

Transition probability matrix 𝑃 defines the probabilities of going
from state 𝑠𝑖 to state 𝑠𝑗 in one step, 𝑖, 𝑗 = 1, ..., 𝑘:

𝑝𝑖𝑗 = 𝑃 (𝑋𝑛+1 = 𝑠𝑗 | 𝑋𝑛 = 𝑠𝑖)

Two-step transition probabilities:

𝑝
(2)
𝑖𝑗 = 𝑃 (𝑋𝑛+2 = 𝑠𝑗 | 𝑋𝑛 = 𝑠𝑖)

By the law of total probability:

𝑝
(2)
𝑖𝑗 =

∑︁
𝑠𝑞∈𝑆

𝑃 (𝑋𝑛+2 = 𝑠𝑗 | 𝑋𝑛+1 = 𝑠𝑞, 𝑋𝑛 = 𝑠𝑖)𝑃 (𝑋𝑛+1 = 𝑠𝑞|𝑋𝑛 = 𝑠𝑖)

=
∑︁
𝑠𝑞∈𝑆

𝑃 (𝑋𝑛+2 = 𝑠𝑗 | 𝑋𝑛+1 = 𝑠𝑞)𝑃 (𝑋𝑛+1 = 𝑠𝑞|𝑋𝑛 = 𝑠𝑖)

=
∑︁
𝑠𝑞∈𝑆

𝑝𝑞𝑗𝑝𝑖𝑞
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Chapman-Kolmogorov Equation

Two-step transition probabilities: 𝑝(2)𝑖𝑗 =
∑︀
𝑠𝑞∈𝑆

𝑝𝑖𝑞𝑝𝑞𝑗

Two-step transition matrix: 𝑃 (2) = 𝑃 2

All 𝑛-step transition probabilities can be calculated using the
Chapman-Kolmogorov equation (1931):

𝑝
(𝑚+𝑛)
𝑖𝑗 = 𝑃 (𝑋𝑚+𝑛 = 𝑠𝑗 | 𝑋0 = 𝑠𝑖) =

∑︁
𝑠𝑞∈𝑆

𝑝
(𝑚)
𝑖𝑞 𝑝

(𝑛)
𝑞𝑗

𝑛-step transition matrices:

𝑃 (2) = 𝑃 (1)𝑃 (1) = 𝑃𝑃 = 𝑃 2

𝑃 (3) = 𝑃 (2)𝑃 (1) = 𝑃 2𝑃 = 𝑃 3

...

𝑃 (𝑛) = 𝑃𝑛, 𝑛 = 1, 2, ...
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State Probability Distributions

Consider a Markov chain 𝑋 = {𝑋𝑛, 𝑛 = 0, 1, ...}, where
𝑋𝑛 ∈ 𝑆 = {𝑠1, ..., 𝑠𝑘}

The state of the Markov chain 𝑋 at step 𝑛 is a discrete random
variable 𝑋𝑛 with the vector of probabilities 𝜋(𝑛):

𝑋𝑛 ∼ 𝜋(𝑛) =
(︁
𝜋
(𝑛)
1 , ..., 𝜋

(𝑛)
𝑘

)︁
= (𝑃 (𝑋𝑛 = 𝑠1), ..., 𝑃 (𝑋𝑛 = 𝑠𝑘))

𝜋
(𝑛)
𝑗 = 𝑃 (𝑋𝑛 = 𝑠𝑗) =

𝑘∑︁
𝑖=1

𝑃 (𝑋𝑛 = 𝑠𝑗 | 𝑋𝑛−1 = 𝑠𝑖)𝑃 (𝑋𝑛−1 = 𝑠𝑖)

=

𝑘∑︁
𝑖=1

𝑝𝑖𝑗𝑃 (𝑋𝑛−1 = 𝑠𝑖) =

𝑘∑︁
𝑖=1

𝑝𝑖𝑗𝜋
(𝑛−1)
𝑖 , 𝑗 = 1, ..., 𝑘

In matrix form:
𝜋(𝑛) = 𝜋(𝑛−1)𝑃
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Stationary Distribution of Markov Chain

Assume the initial state distribution of the Markov chain is defined
by probability vector 𝜋(0): 𝑋0 ∼ 𝜋(0)

The probability distribution vectors of random variables 𝑋1, 𝑋2, ...:

𝑋1 ∼ 𝜋(1) = 𝜋(0)𝑃

𝑋2 ∼ 𝜋(2) = 𝜋(1)𝑃 = 𝜋(0)𝑃 2

...

𝑋𝑛 ∼ 𝜋(𝑛) = 𝜋(𝑛−1)𝑃 = ... = 𝜋(0)𝑃𝑛

Definition
A stationary distribution 𝜋 of a Markov chain is a state probability
distribution that remains unchanged in the Markov chain as time
progresses:

𝜋 = 𝜋𝑃
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Stationary Markov Chain

Definition
A stationary Markov chain is Markov chain with stationary state
distribution 𝜋:

𝜋 = 𝜋(0) = 𝜋(1) = ... = 𝜋(𝑛) = ...

The stationary state distribution 𝜋 of the Markov chain with state
space 𝑆 = {𝑠1, ..., 𝑠𝑘} and transition probability matrix 𝑃 is a
solution of the problem:⎧⎪⎨⎪⎩

𝜋 = 𝜋𝑃
𝑘∑︀

𝑗=1
𝜋𝑗 = 1

⇒

⎧⎪⎨⎪⎩
𝑃 𝑇𝜋𝑇 = 𝜋𝑇

𝑘∑︀
𝑗=1

𝜋𝑗 = 1

The solution 𝜋𝑇 is eigenvector of the transposed transition matrix
𝑃 𝑇 that corresponds to eigenvalue 1
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Limiting Distribution of Markov Chain

Definition
The probability distribution 𝜋 = (𝜋1, ..., 𝜋𝑘) is called a limiting
distribution of the Markov chain 𝑋 = {𝑋𝑛, 𝑛 = 0, 1, ...} with state
space 𝑆 = {𝑠1, ..., 𝑠𝑘} if

𝜋𝑗 = lim
𝑛→∞

𝑃 (𝑋𝑛 = 𝑠𝑗 | 𝑋0 = 𝑠), 𝑗 = 1, ..., 𝑘

for all 𝑠 ∈ 𝑆

By definition, when a limiting distribution exists, it does not depend
on the initial state 𝑋0 = 𝑠 ∈ 𝑆, so the limiting distribution of the
Markov chain is a steady state probability distribution at infinity:

𝜋𝑗 = lim
𝑛→∞

𝑃 (𝑋𝑛 = 𝑠𝑗) = lim
𝑛→∞

𝜋
(𝑛)
𝑗
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Example 1. Markov Chain Description

Consider a switch that has two states: on and off. At the beginning
of the experiment, the switch is off. Every minute after that, we
throw a dice. If the dice shows “6”, we flip the switch, otherwise we
leave it as it is

The discrete-time process {𝑋𝑛, 𝑛 = 0, 1, ...} of switch’s states with
the state space 𝑆 = {0,1} (0: off, 1: on) is a Markov chain

If we know the state of the switch at time 𝑛, we can predict its
future (i.e., the distribution of states) for all future times, without
requiring any knowledge about the past states

Example of non-Markov process:
We flip the switch only if the dice shows a “6” but didn’t show a
“6” the previous throw
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Example 1. Transition Probabilities

Formula of total probability:

𝜋
(𝑛)
𝑗 = 𝑃 (𝑋𝑛 = 𝑗) = 𝑃 (𝑋𝑛 = 𝑗 | 𝑋𝑛−1 = 1)𝑃 (𝑋𝑛−1 = 1)

+ 𝑃 (𝑋𝑛 = 𝑗 | 𝑋𝑛−1 = 0)𝑃 (𝑋𝑛−1 = 0), 𝑗 ∈ {0, 1}

𝜋
(𝑛)
0 = 𝑃 (𝑋𝑛 = 0) =

1

6
𝑃 (𝑋𝑛−1 = 1) +

5

6
𝑃 (𝑋𝑛−1 = 0)

𝜋
(𝑛)
1 = 𝑃 (𝑋𝑛 = 1) =

5

6
𝑃 (𝑋𝑛−1 = 1) +

1

6
𝑃 (𝑋𝑛−1 = 0)

Initial probabilities:

𝜋
(0)
0 = 𝑃 (𝑋0 = 0) = 1

𝜋
(0)
1 = 𝑃 (𝑋0 = 1) = 0

𝜋(0) =
(︁
𝜋
(0)
0 , 𝜋

(0)
1

)︁
= (1, 0)
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Example 1. State Transition Matrix and Diagram

State transition diagram:

0: off 1: on
1/6

1/6
5/65/6

Transition probability matrix:

𝑃 =

(︂
5/6 1/6
1/6 5/6

)︂
≈
(︂
0.83 0.17
0.17 0.83

)︂
𝑛-step transition matrices:

𝑃 (2) ≈
(︂
0.72 0.28
0.28 0.72

)︂
, 𝑃 (3) ≈

(︂
0.65 0.35
0.35 0.65

)︂
, 𝑃 (∞) =

(︂
0.5 0.5
0.5 0.5

)︂
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Example 1. Sample Paths
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Example 1. Limiting and Stationary Distributions

The 𝑛-step transition matrix at infinity: 𝑃 (∞) =

(︂
0.5 0.5
0.5 0.5

)︂
It means that all state probabilities at 𝑛 → ∞ are equal:

𝑃 (𝑋𝑛 = 0 | 𝑋0 = 0) = 𝑃 (𝑋𝑛 = 1 | 𝑋0 = 0)

= 𝑃 (𝑋𝑛 = 0 | 𝑋0 = 1) = 𝑃 (𝑋𝑛 = 1 | 𝑋0 = 1) = 0.5

regardless the initial distribution 𝜋(0)

Therefore, the distribution 𝜋 = (0.5, 0.5) is a limiting distribution

𝜋𝑃 = (0.5, 0.5)

(︂
5/6 1/6
1/6 5/6

)︂
= (0.5, 0.5) = 𝜋

Therefore, the distribution 𝜋 = (0.5, 0.5) is a stationary distribution
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Relation Between Limiting and Stationary Distributions

Any limiting distribution 𝜋 is a stationary distribution
For limiting distribution 𝜋:

𝜋 = lim
𝑛→∞

𝜋(𝑛) = lim
𝑛→∞

𝜋(0)𝑃𝑛

𝜋 = lim
𝑛→∞

𝜋(𝑛+1) = lim
𝑛→∞

𝜋(0)𝑃𝑛+1

= lim
𝑛→∞

𝜋(0)𝑃𝑛𝑃 =
(︁
lim
𝑛→∞

𝜋(0)𝑃𝑛
)︁
𝑃 = 𝜋𝑃

Therefore 𝜋 is a stationary distribution
Not all stationary distributions 𝜋 are limiting distributions
Not all Markov chains have a well-defined limiting behaviour
that does not depend on the initial state probability
distribution 𝜋(0)

𝜋 is limiting distribution ⇒ 𝜋 is stationary distribution. The
converse is not necessarily true
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Example 2. Periodic Markov Chain

Consider the two-state Markov chain 𝑋 = {𝑋𝑛, 𝑛 = 0, 1, ...}:

1 2

1

1

The transition matrix: 𝑃 =

(︂
0 1
1 0

)︂
The state distribution after 𝑛 steps:

𝜋(𝑛+1) = 𝜋(𝑛)𝑃 =
(︁
𝜋
(𝑛)
1 , 𝜋

(𝑛)
2

)︁(︂0 1
1 0

)︂
=
(︁
𝜋
(𝑛)
2 , 𝜋

(𝑛)
1

)︁
There is no steady state limiting distribution which doesn’t depend
on initial distribution 𝜋(0) for this Markov chain
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Example 2. Sample Paths

The Markov chain 𝑋 has only two sample paths

The state 𝑋𝑛 at step 𝑛 depends deterministically on initial state
𝑋0 and the distribution 𝜋(𝑛) of random variable 𝑋𝑛 depends
deterministically on initial distribution 𝜋(0)
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Example 2. Stationary Distribution

The stationary distribution is a solution of the system of linear
equations:⎧⎪⎨⎪⎩
𝜋 = 𝜋𝑃
𝑘∑︀

𝑗=1
𝜋𝑗 = 1

⇒

⎧⎪⎨⎪⎩(𝜋1, 𝜋2) = (𝜋1, 𝜋2)

(︃
0 1

1 0

)︃
= (𝜋2, 𝜋1)

𝜋1 + 𝜋2 = 1

The solution: 𝜋1 = 𝜋2 = 0.5

Therefore, the distribution 𝜋 = (0.5, 0.5) is a stationary distribution

If initial distribution 𝜋(0) = 𝜋 = (0.5, 0.5), then it never will change
at next time steps:

𝜋(0) = 𝜋(1) = ... = 𝜋(𝑛) = (0.5, 0.5)

therefore, the Markov chain 𝑋 is stationary
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Example 3. Stationary Distribution

A sports broadcaster wishes to predict how many Michigan residents
prefer University of Michigan teams and how many prefer Michigan State
teams. She noticed that, year after year, most people stick with their
preferred team; however, about 3% of Michigan University fans switch to
Michigan State, and and about 5% of Michigan State fans switch to
Michigan University. However, there is no noticeable difference in the
state’s population of 10 million’s preference at large. What might that
be? Michigan sports fans have reached a stationary distribution

Suppose 𝑥 is the number of Michigan University fans and 𝑦 is the
number of Michigan State fans and the state population is 10 million

After one year:⎧⎪⎨⎪⎩
𝑥 = 0.97𝑥+ 0.05𝑦

𝑦 = 0.03𝑥+ 0.95𝑦

𝑥+ 𝑦 = 10

⇒

{︃
𝑥 = 6.25

𝑦 = 3.75

𝜋 = (0.625, 0.375) is a stationary distribution of this Markov chain
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Accessible and Communicating States

Definition
The state 𝑠𝑗 is accessible (reachable) from state 𝑠𝑖, written as
𝑠𝑖 → 𝑠𝑗 , if

𝑃 (𝑋𝑛 = 𝑠𝑗 | 𝑋0 = 𝑠𝑖) > 0

for some time step 𝑛 = 0, 1, ...

Definition
Two states 𝑠𝑖 ans 𝑠𝑗 are communicate, written as 𝑠𝑖 ↔ 𝑠𝑗 , if they
are accessible from each other:

𝑠𝑖 ↔ 𝑠𝑗 ⇔ 𝑠𝑖 → 𝑠𝑗 and 𝑠𝑗 → 𝑠𝑖

The communication is reflexive, symmetric and transitive relation
(i.e. equivalence relation)
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Communicating Classes and Irreducibility

The state set 𝑆 = {𝑠1, ..., 𝑠𝑘} can be divided into communicating
classes (equivalence classes) such that only members of the same
class communicate with each other
Two states 𝑠𝑖 and 𝑠𝑗 belong to the same communicating class if
and only if 𝑠𝑖 ↔ 𝑠𝑗

Definition
A Markov chain is said to be irreducible if all its states
communicate 𝑆 = {𝑠1, ..., 𝑠𝑘} with each other, i.e. there exists a
chain of steps between any two states that has positive probability

Irreducible Markov chain is Markov chain that has only one
communicating class
For reducible Markov chain the asymptotic analysis is reduced to
individual subclasses
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Transient and Recurrent States

Transience and recurrence describe the likelihood of a process
beginning in some state of returning to that particular state

Definition
The state 𝑠𝑖 of Markov chain 𝑋 is called recurrent if for some time
step 𝑛 ≥ 1

𝑃 (𝑋𝑛 = 𝑠𝑖 | 𝑋0 = 𝑠𝑖) = 1

Otherwise, the state 𝑠𝑖 is called transient

Any time that we leave the recurrent state we will return to this
state in the future with probability one. For transient states the
probability of returning is less than one

In communicating classes all states are recurrent or transient

A communicating class is called recurrent if the states in it are
recurrent. If the states are transient, the class is called transient
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Criteria of Transience and Recurrence

For transient state 𝑠𝑖 there is a positive probability that the chain
will never return to 𝑠𝑖 after leaving it

Criterion of transience:

𝑠𝑖 is transient ⇔ lim
𝑛→∞

𝑝
(𝑛)
𝑗𝑖 = 0 ∀𝑗 = 1, ..., 𝑘

where 𝑝
(𝑛)
𝑗𝑖 = (𝑃𝑛)𝑗𝑖 is 𝑛-step transition probability from 𝑠𝑗 to 𝑠𝑖

Recurrent state 𝑠𝑖 will be visited in future with probability 1

Criterion of recurrence:

𝑠𝑖 is recurrent ⇔
∞∑︁
𝑛=1

𝑝
(𝑛)
𝑖𝑖 = ∞
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Transient and Recurrent States. Examples

The state 1 is transient; the
probability to return to it is less
than 1

The states 2 and 3 are recurrent;
if you start in either one, you
you’ll return with probability 1

The states 1 and 2 are recurrent;
if you start in either one, you
you’ll return with probability 1
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Positive Recurrent and Null Recurrent States

The Markov chain is expected to return to the recurrent state at
𝑛 → ∞ with probability 1, but it is not necessarily expected to
return even once within a finite number of steps 𝑛

Definition
Let 𝑠𝑖 be a recurrent state of Markov chain 𝑋, 𝑋0 = 𝑠𝑖 and 𝑁𝑖 is
the number of transitions needed to return to state 𝑠𝑖. The state 𝑠𝑖
is called positive recurrent if M[𝑁𝑖] < ∞. Otherwise, the state 𝑠𝑖 is
called null recurrent

For a positive recurrent state the expected number of steps to
return to it is finite, and for null-recurrent is infinite

If all states in an irreducible Markov chain are positive recurrent,
then the Markov chain is called positive recurrent. If all states are
null recurrent, then the Markov chain is called null recurrent
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Positive Recurrent and Null Recurrent States. Example

Consider a random walk with reflection at zero. It is a infinite state
discrete-time Markov chain with state space 𝑆 = {0, 1, ...}
Transition probabilities:

𝑝𝑖𝑗 =

⎧⎪⎨⎪⎩
𝑝, 𝑗 = 𝑖+ 1

𝑞 = 1− 𝑝, 𝑗 = 𝑖− 1

0, otherwise

𝑝 < 0.5 ⇒ all states are positive recurrent
𝑝 = 0.5 ⇒ all states are null recurrent
𝑝 > 0.5 ⇒ all states are transient
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Periodic and Aperiodic States

Definition
A state 𝑠𝑖 has period 𝑟 ≥ 1 if any chain starting at and returning to
state 𝑠𝑖 with positive probability must take a number of steps
divisible by 𝑟. If 𝑟 = 1, then the state 𝑠𝑖 is called aperiodic, and if
𝑟 > 1, the state 𝑠𝑖 is called periodic

The period 𝑟 of state 𝑠𝑖 is the greatest common denominator of the
lengths of all return trips, given that you start in the state 𝑠𝑖

All states in the same communicating class have the same period

A communicating class is said to be periodic if its states are
periodic. A communicating class is said to be aperiodic if its states
are aperiodic

If all states in Markov chain are aperiodic, then the Markov chain is
called aperiodic
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Periodic and Aperiodic States. Examples

All states are periodic with period 𝑟 = 3

All states are aperiodic (period 𝑟 = 1);
lengths of return trips:
to state 1 are 1,2,3,...
to states 2 and 3 are 3,4,5,...
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Absorbing States

A common type of Markov chain with transient states is an
absorbing one

Definition
An absorbing (terminal) state is a state 𝑠𝑖 in a Markov chain 𝑋
such that

𝑃 (𝑋𝑛+1 = 𝑠𝑖 | 𝑋𝑛 = 𝑠𝑖) = 1

Once the absorbing state reached it is impossible to leave it

An absorbing Markov chain is a Markov chain in which it is
impossible to leave some states, and any state could (after some
number of steps, with positive probability) reach such a state

It is not sufficient for a Markov chain to contain an absorbing states
to be an absorbing Markov chain

All non-absorbing states in an absorbing Markov chain are transient
А.Г. Трофимов Марковские процессы 36 / 54



Statistical Description of Markov Processes
Analysis of Markov Chains

Classification of States
Ergodic Markov Chains
Markov Chain Modelling Workflow

Absorbing States. Examples

The Pub and Home are absorbing states of the drunkard’s walk:

The state A is absorbing
state but the Markov chain
is not absorbing one; it is
impossible to reach the
absorbing state with
probability 1 from all other
states
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Ergodic Markov Chain

Definition
An ergodic Markov chain is irreducible and aperiodic Markov chain,
all states of which are positive recurrent

Ergodic Markov chains are, in some senses, the processes with the
“nicest” behaviour

If a finite state irreducible Markov chain has a recurrent aperiodic
state then it is ergodic

A Markov chain is ergodic if there is a number 𝑁 such that any
state can be reached from any other state in any number of steps
greater than or equal to a number 𝑁 (in case of a fully connected
transition matrix 𝑁 = 1)

By changing one state in an ergodic Markov chain into an
absorbing state, the chain immediately becomes an absorbing one
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Stationary Distribution of Ergodic Markov Chain

Theorem
An irreducible Markov chain has a stationary distribution if and
only if all its states are positive recurrent, and in this case the
stationary distribution is unique. The stationary distribution of
ergodic Markov chain is unique

Theorem
Let 𝑋 be an ergodic Markov chain with state space
𝑆 = {𝑠1, ..., 𝑠𝑘}, initial state 𝑋0 = 𝑠𝑗 and 𝑁𝑗 is the number of
steps needed to return to state 𝑠𝑗 . Then the expected number of
steps:

M[𝑁𝑗 ] =
1

𝜋𝑗
, 𝑗 = 1, ..., 𝑘

where 𝜋 = (𝜋1, ..., 𝜋𝑘) is a stationary distribution of 𝑋
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Total Variation Distance

Ergodic Markov chain has a unique stationary distribution 𝜋

How much time it is necessary the state probability
distribution 𝜋(𝑛) after 𝑛 steps to be “close” to the stationary
distribution 𝜋?

We need some measure between these distributions

Definition
Total variation distance Δ(𝑝, 𝑞) between discrete distributions 𝑝
and 𝑞 on the same sample space Ω is defined as

Δ(𝑝, 𝑞) =
1

2

∑︁
𝜔∈Ω

|𝑝(𝜔)− 𝑞(𝜔)|
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Mixing Time of Ergodic Markov Chain

Definition
The mixing time of the Markov chain is the average time (number
of steps) for the total variation distance Δ

(︀
𝜋(0), 𝜋

)︀
between an

arbitrary initial state distribution 𝜋(0) and stationary distribution 𝜋
to decay by a factor of 𝑒

The mixing means the forgetting of initial state

Mixing time is a measure of the relative connectivity of transition
structures in different chains

Less mixing time means more connected structure in the Markov
chain and more quick approaching to the stationary distribution

The mixing time is related to the eigenvalues of transition matrix 𝑃
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Perron-Frobenius Theorem

Markov chain eigenvalues are eigenvalues of its transition
probability matrix

Perron-Frobenius Theorem
A Markov chain with a single recurrent aperiodic communicating
class has exactly one eigenvalue equal to 1 (the Perron-Frobenius
eigenvalue). All other eigenvalues have modulus less than or equal
to 1. The inequality is strict unless the recurrent class is periodic

The mixing time for ergodic Markov chain:

𝑡𝑚𝑖𝑥 = − 1

ln𝜇

where 𝜇 is second largest chain’s eigenvalue magnitude

Spectral gap is the difference between first and second largest
eigenvalue magnitudes: 1− 𝜇
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Spectral Gaps. Illustrations

For aperiodic chain

Thin spectral gap indicate slower
mixing

For periodic chain

Three eigenvalues have modulus
one, which indicates that the

period of Markov chain is three.
Large spectral gap indicate quick

mixing
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Ergodic Markov Chains. Notes

Markov chain is ergodic ⇔ it has stationary distribution
For ergodic Markov chain the initial state distribution 𝜋(0) will
be forgotten and its state distribution converges to unique
stationary distribution 𝜋 = (𝜋1, ..., 𝜋𝑘)

For ergodic Markov chain the proportion of time spent in state
𝑠𝑗 will converge to 𝜋𝑗 , 𝑗 = 1, ..., 𝑘, as time step 𝑛 → ∞
We can use time averaging to estimate the state probabilities
𝜋1, ..., 𝜋𝑘

Ergodic Markov chains are irreducible (and therefore all states
communicate to each other state)
Sometimes irreducible Markov chain is referred to as ergodic
Markov chain: the Markov chain is ergodic if it is possible to
eventually get from every state to every other state with
positive probability (both periodic or aperiodic)
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Example. State Transition Diagram
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Example. Properties of the Markov Chain

Reducibility: the chain is reducible
It contains more than one communicating class
Communicating classes:
{1, 7, 10} – recurrent, periodic (𝑟 = 3)
{4} – recurrent, aperiodic
{9} – recurrent, aperiodic
{2, 3, 5, 8} – transient, aperiodic
{6} – transient, aperiodic
Absorbing states: {4, 9}
But the chain is not absorbing because of absorbing states
cannot be reached from other states with probability 1
Ergodicity: the chain is not reducible therefore it is not ergodic
and doesn’t have unique stationary distribution
Limiting distribution: the asymptotic behaviour depends on
initial state, there is no limiting distribution
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Markov Chain Modelling Workflow

Step 1. Markov chain creation
Using transition matrix 𝑃

Using matrix of observed transition counts 𝐶
The transition matrix 𝑃 is the normalized matrix 𝐶 (such as
sum in each row is equal to 1)
Specifying the mixing structure
The transition matrix 𝑃 is random, but number of non-zero
elements, some transition probabilities, etc. are specified
(appropriate if you have less specific information on a process
under modelling)

Step 2. Markov chain visualization
Draw transition state diagram
Use methods of graph theory to visualize
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Markov Chain Modelling Workflow

Step 3. Identification of class structure
Determine the communicating classes of the chain
Determine the communicating class to which each state
𝑠1, ..., 𝑠𝑘 belongs
Determine whether each communicating class is recurrent or
transient
Determine ergodicity and period of each class. The class is
periodic if it is irreducible and non-ergodic
The recurrent class can be condensed to recurrent subchain
and viewed as a “supernode”

Step 4. Asymptotic analysis of ergodic classes
Determine stationary distribution 𝜋
Plot Markov chain eigenvalues (eigenvalues of transition
matrix 𝑃 ) in complex plane
Determine mixing time
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Markov Chain Modelling Workflow

Step 5. Simulation and redistribution
Simulation provides multiple realizations of Markov chain
trajectories from a specified initial state 𝑥0 or distribution 𝜋(0)

Simulation is used to generate statistical information on the
chain (by ensemble averaging of statistics) that is difficult to
derive directly from the theory

Redistribution is a calculating of 𝑛-step state distributions 𝜋(𝑛)

of Markov chain as it evolves from a specified initial
distribution 𝜋(0)

Step 6. Conclusions and model corrections
Make conclusions based on class structure, stationary
distribution, mixing time, etc. about the process under
modelling or correct the parameters of the Markov model
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Markov Chain Models. Example

State model of grid compute economy simulation model*

*C.Dabrowski, F.Hunt. (2009). Markov chain analysis for large-scale grid systems. National Institute of
Standards and Technology (NISTIR 7566), 1-59.
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Example. Transition Probability Matrix

Transition probability matrix
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Example. Simulation Results 2

А.Г. Трофимов Марковские процессы 53 / 54



Statistical Description of Markov Processes
Analysis of Markov Chains

Classification of States
Ergodic Markov Chains
Markov Chain Modelling Workflow

Example. Simulation Results 3

А.Г. Трофимов Марковские процессы 54 / 54


	Statistical Description of Markov Processes
	Markov Property
	Transition Probabilities
	Stationary and Limiting Distributions

	Analysis of Markov Chains
	Classification of States
	Ergodic Markov Chains
	Markov Chain Modelling Workflow


