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IID Process

IID Process

Independent and identically distributed (IID) process X is a process
where all random variables {X (t),t € 7} are IID

A 11D process can have any probability density function (e.g.
Gaussian, Binomial, Poisson, etc.)
A sample function of Binomial B(10,0.5) IID time series
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Properties of IID Processes

@ |ID processes are SSS
[ID process is k-order stationary for all k = 1,2, ...:

fla,t) = f(z,t+7) = f(z), VrteT

fl,zts + 7, te +7) = f(21, 61+ 7) f(22,t2 + 7)
= f(z1,t1) f(w2,t2) = f(z1,725t1,t2), V7T,t1,t2 € T
By induction, for all other orders of stationarity

@ |ID processes are ergodic
The realization (1), 2(2), ... of time series X can be viewed
as independent sample of observations of the random variable
with PDF f(x). Therefore, for IID time series the time
averaging is equivalent to the ensemble averaging

A.T. Tpocdumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 3/ 64



IID Processes IID Processes
White Noise
Examples of White Noise

Bernoulli Process

Definition
Bernoulli process is a IID process { X (t),t = 0,1,...}, where all

X(t) ~ B(L,p)

Bernoulli process is a discrete-time random process that takes only
two values 0 and 1

Bernoulli process is a repeated coin flipping, possibly with an unfair
coin (but with consistent unfairness)

A sample function of time series X (p = 0.5)
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Discrete-time White Noise

Definition

Strongly (strict-sense) discrete-time white noise {X (¢),t =0,1,...}
is a discrete-time |ID process with zero mean and finite variance o2

Definition
Weakly (wide-sense) discrete-time white noise X is a discrete-time
process that satisfies conditions:

M[X(#)] =0, Vt=0,1,..

DX ()] = 0% <00, Vt=0,1,..
cov(X(t),X(s)) =0, Vt,s=0,1,..., t#s

Wide-sense whiteness skips the requirement of identity and relaxes
the requirement of independency to the uncorrelatedness
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Continuous-time White Noise

Definition

Strongly (strict-sense) continuous-time white noise
{X(t),t € (—o0,00)} is a continuous-time 11D process with zero
mean and infinite variance

Autocovariance of continuous-time white noise:
e(r) = 025(7'), T € (—00,00)

where §(7) is Dirac delta function:

s(ry = T T=0

0, otherwise

and / d(r)dr =1

Infinite variance is related to constant spectral density of process X

A white noise is a mathematical abstraction, it cannot be physically
realized since it has infinite variance
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Autocovariance of White Noise

ACF of discrete-time white ACF of continuous-time white
noise: noise:
c(r) =a%[r], T=0,1,.. c(r) = 0?6(1), T € (—00,0)
Discrete-time unit impulse Continuous-time unit impulse
(Kronecker delta) (Dirac delta function)
1, =0, 400, =0,
5r] = T 5(7) = .
0, otherwise 0, otherwise
d[n]
8(6)
0 n 0 ¢
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White Noise. Notes (1)

X is strongly white process = X is weakly white process. The
converse is not necessarily true

@ Strongly white noise is a SSS process

@ By definition, weakly white noise is a WSS process
Weakly white noise is a serially uncorrelated, zero-mean and
constant variance process

@ The random variables X (¢) and X (s) are independent for
strongly white noise (or uncorrelated for weakly white noise)
no matter how closely they are placed

@ Sometimes the zero-mean requirement is relaxed to
constant-mean requirement. In this case, white noise with zero
mean is referred to as centered white noise

2

@ Variance o is called intensity of white noise
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White Noise. Notes (2)

@ A weakly white noise process is linearly unpredictable as the
noise samples at different instants of time are uncorrelated

@ A strongly white process is unpredictable and sometimes is
referred to as purely random process

@ A white noise process can have any probability density function
(e.g. Gaussian, Binomial, Poisson, etc.)
If X is a white noise and X (t) ~ N(0,02), t € 7, then X is
called white Gaussian noise

@ For Gaussian random variables uncorrelatedness and
independence are equivalent. Therefore, for white Gaussian
noise strict-sense whiteness and wide-sense whiteness are
equivalent
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Example 1. Discrete-Time White Gaussian Noise (WGN)

For white Gaussian noise strict-sense whiteness and wide-sense
whiteness are equivalent

All {X(t),t =0,1,...} are normally distributed IID random

variables:
X(t) ~ N(0,0°)
A sample function of discrete-time WGN
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Example 2. White Bipolar Noise

All {X(¢),t =0,1,...} are IID random variables with distribution:

X(t) = -1, .with probaft')ility 1—p,
1, with probability p

A sample function of white bipolar noise (p = 0.5)
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White bipolar noise is strongly white noise
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Example 3. White Sinusoidal Noise

Consider a time series X (t) = sin(V't), where V' is a random
variable, V.~ R(0,27) and t = 1,2, ...

A sample function of time series X

0.5

Amplitude

-0.5

20 40 60 80 100 120 140 160 180 200
Time

For each realization {z(t),t = 1,2, ...} the frequency v is constant

over time
12 / 64
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White Sinusoidal Noise. Expectation and Variance

Check if X is a weakly white time series

Expectation of time series X:

2T o
m(t) = M[X(t)] = M[sin(Vt)] = L /sm(’ut)dv " cos(vt)] =0
2m 2mt 0
0
Variance of time series X:
2m
o2(t) = DX (t)] = Dlsin(Vt)] = 2i / sin? (vt)dv
™
0
7 1 in(20t)\ 7
Sini zv
= /(1 — cos(2vt))dv = e <U - > .
0
= i(27r —-0) = 1

4 2
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White Sinusoidal Noise. Autocovariance

Autocovariance of time series X:

21
ct,t+7)=MXHX{t+71)] = % / sin(vt) sin(vt 4+ v7)dv
0

2
1
= /(COS(UT) — cos(2vt + vT))dv
0

V=27

_ 1 (sin(vr) sin(2vt +o7)
 4n T 20+ 1

v=0
m=0,0%=3 <ooandc(r) =0 forall 7 #0

= X is weakly white noise
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White Sinusoidal Noise. Stationarity

Check if X is a strongly white time series

For strongly white time series all X (1), X(2), ... must be IID
random variables

Consider random variables X (1) and X (2)
Univariate distributions:
F(z1,1) = P(X(1) <x1) = P(sinV < 1)
F(22,2) = P(X(2) < 73) = P(sin2V < z2)
Bivariate distribution:

F(z1,72:1,2) = P(X(1) < 21&X(2) < a2)
= P(sinV < z1&sin 2V < x3)

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 15 / 64



IID Processes IID Processes
White Noise
Examples of White Noise

White Sinusoidal Noise. Stationarity

Assume 1 = 29 = —@:
F(zi,1) = P (sinv < —\/3/2) >0
F(1,2) = P (sin2V < —\/5/2) >0

F(x1,12;1,2) = P

(

sinV < —v/3/2 & sin2V < —\/5/2) ~0

sin(v)

X (1) and X (2) are dependent = X is not strongly white noise
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Gaussian Process
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Gaussian Process

A random process X is called Gaussian process if all its finite order
distributions are Gaussian, i.e. the random vector (X (t1), ..., X (tx))
has multivariate normal distribution

(X (t1), ..., X(tg)) ~ Ni(m, ¥)

for all k and all t1,....t, € T

The PDF of multivariate normally distributed vector (X7, ...X%):

—;ex —lx—mT Lz —m
(@) = (2m)k det 32 p( 2( yE )>

where m = (my,...,my)7 is expectation, ¥ is covariance matrix of

vector (X71,...X%)
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Properties of Gaussian Processes

@ Gaussian random processes generalize Gaussian random
vectors to infinite dimensions

@ Gaussian process { X (t),t € 7} can be completely defined by
its second-order statistics: expectation m(t), t € 7, and
autocovariance function ¢(t1,t2), t1,t2 € T

@ For Gaussian processes WSS and SSS properties are equivalent:

WSS & SSS

@ Any linear transformations of Gaussian time series X:

k
Y(t)= Y hiX(t+i), t=..,-10,1,..
i=—k

results to a Gaussian time series Y

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB
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Gaussian Processes. Example 1

Process X (t) = Acos (Zt) + Bsin (Zt), where A and B are
independent random variables, A ~ N(0,1), B ~ N(0,1) and

te T

Some realizations of time series X

Amplitude

Time

For each time moment X (¢) ~ N(0,1), t € 7
Prove that time series X is stationary if .7 ={0,1,2,...}!
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Gaussian Processes. Example 2
Time series X (t) = X(t —1) - X(t—2)+U(t), X(1) =U(1),
X (2) = U(2), where U is a Gaussian white noise N(0,1) and
t=1,2,..

A sample function of time series X

- N
o o
T

Amplitude
o

0 50 100 150 200 250 300 350 400
Time

Prove that time series X is non-stationary!
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Gaussian Processes. Example 3

2
23 V(t+1), where {V(t),t =—1,0,1,...}
i=—2

1,1)and t =1,2,...

Time series X (t) =
(2
is a uniform white noise R(—

A sample function of time series V and X

m i'm x, ,,,,.«,u;w

o ©
o ®

o
o~

T "'l »'“

Amplitude

o

—8
T|me

Prove that time series X is stationary!
Is time series X a Gaussian white noise?
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Normalization of Non-Gaussian Time Series

Central limit theorem (CLT) establishes that, in some situations,
when independent random variables are added, their properly
normalized sum tends toward a normal distribution even if the
original variables themselves are not normally distributed

A time series Y constructed as linear transformation of
non-Gaussian time series X tends to be Gaussian:

k
Y(t)= > hX(t+1i)
i=—k
Particularly, a time series Y constructed as moving average of
non-Gaussian time series X tends to be Gaussian:

1 k

T %41

1=—
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Process with Independent Increments
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A process X is said to be a process with independent increments if

for any k > 1 and for any time moments t; <ty < ... <y € T
the random variables

X(t1), X (t2) — X(t1), ..., X (tr) — X (tp—1)

are mutually independent

A process X is said to be a process with stationary increments if
for any 7 € 7 and for any time moments t; < t9, t1,t5 € 7, the
increments

X(tg)*X(tl) and X(t2+7)*X(t1+7)
have the same distributions

23 / 64
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Process with Stationary Increments

@ The distribution of the difference X (t2) — X (¢1) depends only
on the length of the interval (¢1,t2] and not on the exact
location of the interval on the time line

@ Usually, it's assumed X (0) =0

o Let 7 = —t7:

X(ta) = X(t1) ~ X(to+7)—X(t1+7)
X(t2) = X(t1) ~ X(ta—1t1)—X(0)
X(ta) — X(t1) ~ X(ta—1t1)

Definition

A process X is said to be a process with stationary increments if
for any time moments t1 < ty, t1,t2 € 7, the increment

X (t2) — X (t1) has the same distribution as the random variable
X(te — t1)
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SIl Time Series

If the increments of the process X are stationary and independent

then the process X is referred to as process with stationary,
independent increments (Sll-process)

Theorem (Criterion of Sl time series)

The time series {X (¢),t = 0,1, ...} has stationary independent
increments iff there exists an |ID time series {U(¢),t = 1,2, ...}
such that

For time series with stationary independent increments:
X(0)=0
Xt)=Xt-1)+U(), t=12,..

25 / 64
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Criterion of Sll Time Series. Proof

Sufficient condition:
Suppose that {U(t),t =1,2,...} is an IID time series and

t
X(t) = LU, t=1,2,... Then

to—11

X (ty) — Z U(i)=Y_ Ui)=X(tz—t)

1=t1+1
Therefore, X is Sl time series
Necessary condition:
Suppose that {X(¢),t = 0,1, ...} is process with stationary
independent increments. Let

Ut)y=X(@t)—X(t-1), t=1,2,..
Therefore, {U(t),t =1,2,...} is a sequence of 11D random variables
and X(t) =Ut)+ X(t—1)=...=3"_ U@
OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 26 / 64
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Expectation and Covariance of SIl Time Series

Theorem

Suppose that {X (t),t =0,1,...} is a time series with stationary
independent increments. Then there exist constants m and o2 such
that the expectation and covariance function of X are

M[X ()] = mt, t=0,1,..

c(t,s) = cov(X (t), X(s)) = o?min{t,s}, t,s=0,1,..

If t < s:

ct,s) = cov(X (), X(s)) = 0’t, t=0,1,...

Variance of Sll time series:
DX (t)] = cov(X (t), X (t)) = 0%, t=0,1,...
OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 27 / 64
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Expectation and Covariance of SIl Time Series. Proof

Time series X is Sll = exists an |ID time series {U(t),t = 1,2, ...}

such that .
X)) =Y U(), t=12
=1
MX(#H)] =M |Y U@)| =D MU(®i)] = mt
=1 =1

t
=) DU®G)] =0 t<s
1

1=

=D

> UG)
i=1

Therefore, m and o2 are expectation and variance of random
variables U(t), t = 1,2, ...
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Counting Process

Definition

Counting process {X (t),t € [0,00)} is a random process with
non-negative, integer and non-decreasing values:

1) X(t) €{0,1,2,...}, te€[0,00)
2) X(s) < X(t) for s<t

Usually, it's assumed X (0) =0
X (t) shows the number of events up to time ¢

X (t) — X (s) shows the number of events occurred during the
interval (s, t]

The occurrence of each event is referred to as an “arrival”
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Bernoulli Counting Process

Bernoulli counting process {Y (t),t = 0,1,...} is a discrete-time
process defined as:

where X is a IID Bernoulli process, X (t) ~ B(1,p), t =1,2, ...

By definition, Bernoulli counting process is SlI time series
If p= 0.5, then the Bernoulli process is called symmetric

Expectation and covariance:
m(t) = M[Y (t)] = tM[X (t)] =tp, t=0,1,...

cou(t,s) =tD[X(t)] =tp(1 —p), t<s
OcHoBHble Knaccbl CnyHaﬁthx npoueccos
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Bernoulli Counting Process. lllustrations

p=0.5

51:0meTT1TOTTTTm[UjHHH | | H |
Time

<2(J)m*b*—T—T—T;T6T 20 30 40 50
Time

31/ 64

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aiiHbIX NPOLECCOB



SlIl Processes
Poisson Process
Sl Processes Wiener Process

Poisson Process

A.T. Tpodbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB

Definition

The counting process {N(t),t € [0,00)} is called a Poisson process
with rate (or intensity) A > 0 if all the following conditions hold:

1) N is Sl process

2) N(0) =0

3) The number of arrivals in any interval of length 7 > 0 has
Poisson distribution Pois(AT)

The Poisson process is one of the most widely-used counting
processes

It is usually used in scenarios where we are counting the
occurrences of certain events that appear to happen at a certain
rate, but completely at random (without a certain structure)
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Poisson Distribution

Poisson distribution is discrete probability distribution with support
{0,1,2,...} and probabilities defined as:

Nee=A
R
The Poisson distribution Pois(\) can be viewed as a limiting case

of the binomial distribution B(n, p) as the number of trials n — oo
and the expected number of successes np = A remains fixed

P(X =k) = k=0,1,2,..

0.40
03571 ° A
030} | * A=
\ a —_
= 0.25} A
T \
0200 ope
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k
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Shrunk Bernoulli Counting Process

Consider a Bernoulli counting process {Na(t),t = 0, A, 2A, ...},
A < 1, where time scale was shrunk:

{0,1,2,..} = {0,A,2A, ...}

The random variable N (t) is a number of arrivals passed up to
time moment ¢ = n(t)A, where n(t) is the number of events
passed up to time moment ¢, n(t) € {0,1,2,...}:

-

For Bernoulli counting process:

n(t)
Na(t) =Y X(i), t=A2A, ..
=1
where X (i) ~ B(1,p) is outcome of i-th event, i = 1,2, ...
OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 34 / 64
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Shrunk Bernoulli Counting Process

To keep arrival rate constant, assume the probability of arrivals:

p=P(X([H)=1)=AA, i=1,2,..
where A > 0
The expected number of successes passed up to time ¢:
n(t)p = [t] M =~ At
A
doesn’t depend on A

As A — 0 the distribution of random variable Na () will approach
to Poisson distribution:
t

Na(t) ~ B(n(t),\A) = B <[A

} ,AA) — Pois()\t)
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Poisson Process as a Limit of Bernoulli Counting Process

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB

Expectation and covariance of counting process Na:

t

m(t) = M[Na(t)] = M[X (¢)]n(t) = [A

] M =M, t=0,A,2A, ...

cov(t, s) = DIX (B)]n(t) = [ﬂ AA(=AA) m A(I=AA)E & M, £ < s

It's shown that the process {Na(t),t = 0,A,2A, ...} converges to
the Poisson process {N(t),t € [0,00)} with intensity A at A — 0:

N(t) = lim Na(t)

Poisson process can be viewed as Bernoulli counting process with
infinitely small probable but infinitely frequent events
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Poisson Process. lllustrations

Sample paths of processes N
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Properties of Poisson Process

@ Poissonity
The number of points (arrivals) in each interval (¢,¢ + 7] has a
Poisson distribution: N (¢t + 7) — N(t) ~ N(7) ~ Pois(A1)
@ Stationarity
The distribution of number of points in each finite interval
(t,t + 7] depends only on interval's length
@ Independency
The number of points in disjoint intervals are independent
random variables
@ Homogeneity
The average density of the points located in each finite
interval (¢,¢ + 7] is constant and equal to process’ intensity A
@ Orderliness
Probability of any of two points coinciding in the same time is
zero
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Second Definition of Poisson Process

A.T. Tpodumos OcHOBHbIE KNacchl Cy4aiiHbIX NPOLECCOB

The counting process {N(t),t € [0,00)} is called a Poisson process
with rate (or intensity) A > 0 if all the following conditions hold:

1) N is SlI process

2) N(0) =0

3) The probabilities of number of arrivals in any interval
(t,t+ A], A — 0, are

P(N(t+A) = N(t) =0) =1 — AA + o(A)
P(N(t+A) — N(t) = 1) = AA + o(A)
P(N(t+A) — N(t) > 2) = o(A)

It can be shown that the orderliness implies Poissonity and vice
versa
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First Arrival of Poisson Process

Let {N(¢),t € [0,00)} be a Poisson process with rate

The probability of & arrivals in time interval (0, ¢] has Poisson

distribution Pois(At):

(/\t)kef)‘t
kK

Let X be the time of the first arrival

P(N(t)=k) = k=0,1,2,..
The probability of no arrival in time interval (0, ¢]:

P(Nt)=0)=P(X; >t)=e M
Therefore, the CDF of random variable X;:

l—e M, t>0

FXl(t):P(Xl<t):1—P(X12t): .
0, otherwise
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Interarrival Times of Poisson Process

Let X5 be the time elapsed between the first and the second arrival

LN L X Xs R |

0 Ty T T3 Ty

The probability of no arrival in time interval (s, s + t] given that the

first arrival was at time s:

P(Xy > t|X1 = s) = P(N(s+t)—N(s) = 0) = P(N(t) = 0) = e~

We conclude that X; ~ Exz(At), X9 ~ Ex()) and random
variables X7 and X are independent

Similarly all interarrival times X7, X5, ... of the Poisson process
{N(t),t € [0,00)} are independent exponentially distributed
random variables X; ~ Ex())

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB
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Exponential Distribution

Exponential distribution is continuous probability distribution with
support [0,00) and CDF (PDF) defined as:

1—e ™ t>0 Ae™M >0
Fx(t) = T t) = T
x(®) 0, otherwise x(®) 0, otherwise
Exponential distribution CDF Exponential distribution PDF
i.i- A=0.5
1.9 —_— =1
A=15

1.0
Zos

0.6
0.4
02 ¥

5 O'CO 1 2z 3 4 5
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The Waiting Time Paradox

The situation:

You arrive at the bus stop, ready to catch your bus: a line that
advertises arrivals every 10 minutes. You glance at your watch and
note the time... and when the bus finally comes 11 minutes later,
you wonder why you always seem to be so unlucky

Naively, you might expect that if buses are coming every 10
minutes and you arrive at a random time, your average wait would
be something like 5 minutes

But in reality:
When waiting for a bus that comes on average every 10 minutes,
your average waiting time will be 10 minutes
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The Waiting Time Paradox. Explanation

The bus arrival process is an example of Poisson process

The probability of no arrival in time interval (0, to + t] given that
there was no arrival in time interval (0, t]:

P(N(toth):O]N(to):O):P(N(toth):O&N(tO):o)

P(N(to) = 0)
B P(N(to +t) — 0) B e—Ato+1) Y
T T P(N(t)=0) e ©

Therefore, the waiting time X given that there was no arrival in
time interval (0, o] has exponential distribution
X|N(tg)=0 ~ Ex()) and the average waiting time is M[X] = 1/A

It doesn't matter how long you were waiting till time ¢, the
probability of no arrival in next ¢ minutes depends only on ¢
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Arrival Times of Poisson Process

Let T;, be the time of n-th arrival:

where X; ~ Ex(\) is i-th interarrival time

It's known that the sum of exponentially distributed random
variables follows Erlang distribution (that is Gamma distribution
with integer parameter n):

T, ~ Erlang(n, \)

The Poisson process is related to probability distributions:
@ Poisson Pois(\1)
@ Exponential Ez())
e Erlang Erlang(n, \)
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Erlang Distribution

Erlang distribution is continuous probability distribution with
support [0, 00) and PDF defined as:

Antnflef)\t
x(t)=—F——7—, n=12,..
f ( ) (n _ 1)| Y » =
Erlang distribution CDF Erlang distribution PDF
1 e e 0.5
0.9 |
08 04 f
07 \
0.6 0.3
05
04 0.2
03
02 01
o1 |
0 : 0 AR Tt
14 16 18 20 0 2 4 6 8§ 10 12 14 16 18 20
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Compound Poisson Process

Let {N(t),t € [0,00)} be a Poisson process with rate A and and
suppose that i-th arrival of the Poisson process has an associated
random variable Y;, i = 1,2, ...

Definition

A compound Poisson process with rate A is a process
N(t)

{Z(t),t € [0,00)} such that Z(t) = Z Y;, where Y1,Y5, ... are

=1
IID random variables and also independent of the process IV

If all Y; = 1, then Z is a simple Poisson process

If all Y; € {1,2,...}, then Z is a Poisson process which has the
feature that two or more events occur in a very short time

Examples: random amount of money spent by a customer, random
amount of time spent by a visitor on website, etc.
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Applications of Poisson Processes

Poisson process is one of the most important tools to model the

natural phenomena

Number of calls to a phone number
Arrival of email messages

Visits to a website

Traffic accidents at an intersection
The points scored by a football team
Occurrences of natural disasters
Number of radioactive particles emitted during radioactive
decay

Claims received by insurance company
Customers arrive at a shopping mall
Earthquakes at a particular location

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB
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Simple Random Walk

Simple random walk {Y'(¢),t = 0,1,...} is a discrete-time process

defined as:

where {X (¢),t =1,2,...} is a IID bipolar process, X (¢) € {—1,1},

P(X(t)=1)=pand P(X(t)=-1)=1—p

By definition, simple random walk is Sl time series
Expectation and covariance:
m(t) =M[Y (¢t)] = tM[X(t)]=(2p—1)t, t=0,1,...

cou(t,s) =tD[X(t)] = 4p(1 —p)t, t<s
OcHoBHble Knaccbl cnyHaﬁthx npoueccos
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Simple Random Walk. lllustration

The increments for Bernoulli counting process:
Y(t+1)-Y(t) €{0,1}

The increments for simple random walk:
Y(t+1)—Y(t) € {~1,1}

A sample function of simple random walk

e
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2D Random Walk

Consider 2D random process {(X(¢),Y (t)),t = 0,1, ...}, where
processes X and Y are independent simple random walks

At any time moment ¢ = 0, 1, ... the increment of 2D random walk
is one of four equally probable vectors:

(=1,-1), (—=1,1), (1,-1), (1,1)

To visualize 2D random walk one can imagine a person walking
randomly around a city. The city is effectively infinite and arranged
in a square grid of sidewalks. At every intersection, the person
randomly chooses one of the four possible routes (including the one
originally traveled from)

2D random walk is a random walk on the set of all points in the
plane with integer coordinates
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2D Random Walk. lllustration

TP

ti
-“‘. -“_-:r-lh
i

https://upload.wikimedia.org/wikipedia/commons/c/cb/
Random_walk_25000.svg
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Wiener Process

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB

Wiener process {W(t),t € [0,00)} is a continuous-time process
with the following properties:

1) W is Sl process
2) W(0)=0

3) Increments W (t + 7) — W (t) have distribution N (0, )
forall t € [0,00), 7 >0

4) W (t) is a continuous function of time on [0, o)

Wiener process is a model of Brownian motion

It describes the position of a Brownian particle in one dimension,
starting at an arbitrary time which we designate as t = 0, with the
initial position designated as w =0
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Standartization of Random Walk

Consider a symmetric simple random walk {Y'(n),n =0,1,...} on
the lattice of integers:

Y(0)=0, Y(n)=> &(i), n=12..
=1

where {£{(n),n =1,2,...} is a IID bipolar process and

p=Pn)=1)=P¢n)=-1)=05, n=12,..
Expectation: m(n) = M[Y(n)]=2p—1)n=0, n=0,1,..
Variance: c¢(n,n) =D[Y (n)] =4p(1 —p)n =43 (1 - n=n
The Central Limit Theorem asserts that

Y(n)
Vn
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Wiener Process as a Limit of Scaled Random Walk

Consider a continuous-time process {W,,(t),t € [0,00)}, where
random variable W, (t) is defined as:

where [nt] is the largest integer less than nt

The random variable W), (¢) can be viewed as an amplitude of
simple random walk with step \/n after [nt] steps

It's shown that the process {W,,(t),t € [0,00)} converges to
Wiener process {W(t),t € [0,00)} at n — oo (Donsker's theorem):

Y(|nt
W(t) = lim W,(t) = lim Y(lnt))
n—o00 n—00 \/ﬁ
Wiener process can be viewed as random walk with infinitely small
but infinitely frequent steps
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Wiener Process. lllustrations

Sample paths of processes W,,

O_ST leﬂ'u'l. —n=50
i ——n=100
2 %TJ%{\”M” N w500
205
<
-1
0 0.2 0.4 0.6 0.8 1
Time

Sample paths of process W
]

o

.5

A, f‘““mww
MW F

1

Amplltude

Time
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Properties of Wiener Process

@ Random variable W (t) ~ N(0,t) for all ¢ € [0, c0)
By definition, W (¢t +7) — W (t) ~ N(0,7) and W(0) =0

Assume t =0 = W (r) ~ N(0,7) for all 7 € [0, 00)

@ Expectation, covariance and correlation:

p(W(t), W(s)) =

M[W(t)] = 0
cov(W(t),W(s)) = min(t, s)
cov(W(t),W(s)) min(t,s) |min(t,s)

o(t)o(s) Vits | max(t,s)

@ Wiener process is temporally and spatially homogeneous
If we “restart” Wiener process at a fixed time s, and shift the
origin to W (s), then we have another Wiener process

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aliHbIX NPOLECCOB 57 / 64



Sl Processes
Poisson Process
Sl Processes Wiener Process

Gaussianity of Wiener Process

Consider distribution of random vector (W (t1), W (t2)), t1 < t2
W is SlI process = W (t;) and W (t2 —t1) are independent random
variables and W (to — t1) is distributed as W (tg) — W (¢1):

W(tl) ~ N<07t1)

W (ta) — W(t1) ~ N(0,t2 — t1)
The joint CDF of random vector (W (t1), W (t2)):

Ft17t2(x1,x2) = P(W(tl) < I & W(tg) < xg)

= P(W(tl) <r & (W(tl) + W(tg —t1) < 3:2))

= P(W(tl) < T & W(tg — tl) < X9 — xl) = Ft1 (xl)FtQ_tl (.%2 — .%'1)
Therefore, 2D and any finite dimensional distributions of Wiener

process (by induction) are multivariate normal distributions, i.e.
Wiener process is a Gaussian process
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Generalizations of Wiener Process

Definition

A Wiener process with drift m and variance o2 is a process

{X(t),t €[0,00)} defined as
X(t) =mt+ oW (t)

where {W (t),t € [0,00)} is a standard Wiener process

Definition

A n-dimensional Wiener process is a random process (W1, ..., Wp,)
with the following properties:

1) Each W; is a one-dimensional Wiener process, i = 1,...,n

2) Processes W; and W; are independent, i, =1,...,n, i # j

A.T. Tpocbumos OcHOBHbIE KNacchl Cy4aiiHbIX NPOLECCOB
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Generalizations of Wiener Process. lllustrations

Wiener process with drift m =1 and o =2

Amplitude

Time

2D Wiener process

06 -04 -0.2 0 0.2 0.4 0.6 0.8
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Wiener Process and White Gaussian Noise

The increment of Wiener process I at time ¢:
AW (t) = W(t + At) — W (t) ~ N(0, At)

The derivative of Wiener process W at time ¢:
A
dW (t) lim W (t)

V) dt Also At

[
dw(t)] DAW(®)] . At
POl =D [ di ] ST AN @A =

For any time moment ¢ the derivatives V' (¢) are normally
distributed IID random variables with zero-mean and infinite
variance, therefore, the derivative of Wiener process is
continuous-time Gaussian white noise
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Additive White Gaussian Noise and Brown Noise

Let y(t) is a true value of observed variable (e.g. output of some
dynamical system), §(t) is a measured value of y(t)

Noise is unwanted (and, in general, unknown) modifications that a
signal may suffer during capture, storage, transmission, processing,
or conversion

Additive white Gaussian noise Additive Brown noise
g(t) = y(t) +<(t) g(t) = y(t) +v(t)
e(t) ~ N (0, 02) v(t) = e(t)
v(0) =0

£(t) ~ N(0,02)
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Applications of Wiener Processes

The Wiener process is a natural model of Brownian motion

It describes a random continuous motion of a particle, subjected to
the influence of a large number of chaotically moving molecules of
the liquid

@ Brownian noise (i.e. noise due to the Brownian motion)
appears in many areas (e.g. Brownian noise of diaphragm in
ultrasensitive pressure sensors, in electrical circuits, etc.)

@ Brownian motion in the stock market

@ Swimming of microorganisms in a pool of liquid

@ Brownian agents to model collective social processes (online
communities, etc.)

@ Brownian motion in medical imaging (modelling of random
textures, etc.)

° ...
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Poisson Process vs Wiener Process

Property Poisson Process | Wiener Process
Index set [0, 00) [0, 00)
State space {0,1,2,...} (—00, 0)
Parameters Intensity A > 0 D.rn‘t m, 9
variance o
1D process No No
SII process Yes Yes
Counting process Yes No
Gaussianity No Yes
WSS process No No
SSS process No No
Expectation m(t) At mt
Variance o2(t) At ot
Covariance cov(t, s) Mt <s ot t < s
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