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- . Definitions
Statistical Description of Random Process ] @l Bregaristien
2-nd Order Description

Random Process

Definition

A random (or stochastic) process X is a collection of random

variables { X (¢)};c.# that is indexed by some mathematical set .77

Each random variable X (¢) of the stochastic process X is uniquely

associated with an element ¢t € ., where 7 is the index set

Notations:

X, {X(hez, {Xihes, {X(1),te T}

7 continuous = X is called a continuous-time random process

7 discrete = X is called a discrete-time random process
T integer = X is called a random sequence (time series)
The term random function is also used to refer to a random
(stochastic) process
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- . Definitions
Statistical Description of Random Process ] @l Bregaristien
2-nd Order Description

Ensemble of Signals and Sample Function

A random process is the process which generates an ensemble of
random signals

Ensemble is a collection (a family) of all possible random signals
generated by a random process

Sample function (realization, sample path, trajectory of random
process) is one specific random signal {z(t),t € .7}, generated by
a random process X

The value of a sample function x(¢) at time ¢ is called the
amplitude of random signal at time t € .7

The amplitude z(t) at fixed time ¢, is a realization of corresponding
random variable X (¢), t € 7
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- . Definitions
Statistical Description of Random Process ] @l Bregaristien
2-nd Order Description

Index Set, State Space and Sample Space

Index set .7 is a space of all possible values of independent variable
(time) ¢

Examples of index sets: 7 =R, =72, 7 ={1,2,..}
State space 2 is a mathematical space from which each random

variable X (t), t € .7, of the process X takes values (can be
continuous or discrete)

For any sample function: z(t) € 2", t €

Sample space ) is a set of all possible outcomes of the underlying
random experiment. Each outcome w € () leads to a corresponding
sample function z(t), t € 7

A random process X provides a mathematical model for an
ensemble of random signals and represents mapping of the sample
space 2 into a set of signals
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Statistical Description of Random Process

Random Process. lllustration 1

Definitions
1-nd Order Description
2-nd Order Description

The set of all possible functionsis called the

Sample ENSEMBLE

space
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- . Definitions
Statistical Description of Random Process ] @l Bregaristien
2-nd Order Description

Random Process. lllustration 2

A sample function is formed by taking a single possible value of
each random variable X (t), t € .7, of the stochastic process X

Sample functions of a random process
‘| p ‘-' .\'r{u}l]
10| 8 Xi(ws)

3(X4)
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. A Definitions
Statistical Description of Random Process 1-nd Order Description
2-nd Order Description

Univariate CDF and PDF

Stochastic process can be viewed as a function of two variables —
time t and outcome w € §2, where Q) is a sample space

For a given time t € .7 we get a random variable X (t), t = const
For a given outcome w € €2 we get a function of time z(t), t € T

The univariate cumulative distribution function (CDF) of a
real-valued random signal X is defined as

F(x,t) = Fx(y(z) = P(X(t) <2), teT

The univariate probability density function (PDF) of a
continuous-amplitude real-valued random signal X is defined as the
derivative of the univariate CDF:

_ OF(x,t)

f(xvt)_77 teg
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. A Definitions
Statistical Description of Random Process ] @il Bregarisen
2-nd Order Description

Properties of Univariate CDF and PDF

Univariate CDF and PDF at any given time ¢t € 7 characterize the
random variable X ()

0 0 < F(x,t) <1, forall x € (—o0,+00)

® F(—o0,t) =0

@ F(+o0,t) =1

o F(x1,t) < F(za,t), x1 <o

@ Pla< X(t)<b)=F(bt)— F(a,t), a<b
° +f f(z, t)dx =1

o Flz,1) = f F(&,0)de
o f(—o0,t) = f(+o0, tz
o Pla< X(t = [ f(z,
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- . Definitions
Statistical Description of Random Process 1-nd Order Description

2-nd Order Description

Univariate CDF and PDF. lllustrations

Amplitude
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. A Definitions
Statistical Description of Random Process ] @il Bregarisen
2-nd Order Description

Expectation and Variance

Expectation of time series X is a deterministic function m(t),

te I .
m(t) = M[X(t)] = / xf(z,t)dx
Variance of time series X is a deterministic function d(t), t € 7
+0o0
() = DIX ()] = [ (o= m(t)>f(z.0)dz

Let's Y(t) = p(X(¢)), t € 7, where ¢(+) is an arbitrary function

Expectation of time series Y at time ¢t € 7 is defined as:
+0o0
MY (0] = MIp(X ()] = [ (o) (o, t)ds

—00
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. A Definitions
Statistical Description of Random Process ] @il Bregarisen
2-nd Order Description

Estimations by Ensemble Averaging

Expectation m(t) and variance o?(t) at time t € .7 can be
estimated by ensemble averaging:

1 N
(D) = 5 Dl
1 N
o3 () = N 2 (@n(t) = (1))
n=1

where x,,(t) is a value of random process X in n-th realization at
time t, t € 7; N is a number of realizations used for estimation

It can be shown that 7y (t) and 6%(¢) are consistent estimators of
expectation M[X (¢)] and variance D[ X (¢)]:

my(t) = m(t), 6&%(t) — o?(t) when N — oo
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. A Definitions
Statistical Description of Random Process 1-nd Order Description
2-nd Order Description

Ensemble Averages. lllustration

2+

0 0.5 1
Time

Amplitude

1.5

Standardization of time series X:

Properties of standardized time series Y:
M[Y(t)] =0, D[Y(t)]=1, VteT
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Bivariate CDF and PDF

Choose some pair of time moments 1 € J and ty € T

For a pair of corresponding random variables X (¢1) and X (t2) we
can specify their joint probability distribution functions

The bivariate (or joint) CDF of a random signal X is defined as
F(z1,22;t1,t2) = Fx(1,)x (1) (71, T2)

= P(X(tl) < CCl&X(tg) < {L‘Q), the T, 0T

The bivariate (or joint) PDF of a random signal X is defined as the

second derivative of the bivariate CDF:

OF (21,2511, 1)
8x18x2 ’

f(x1, ma5t1,t2) = theT, taed
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Properties of Bivariate CDF and PDF

Bivariate CDF and PDF at any given times t; € 7, to €
characterize the random vector (X (t1), X (t2))

o F(—OO,:L’Q;tl,tQ) =0
@ (0o, ma;t1,te) = F(xa,t2)
° F(O0,00;tth) =1
o f(—o0,m2;5t1,t2) =0
o f(oo,xa;t1,t2) =0
+o00
o f(z1,t1) = [ flo1,mo;5t1,t2)dxs
"] P(a1 < X(tl) < bl&CLQ < X(tg) < bg) = F(bl,bg;tl,tQ) —

F(bi,ag;ti,t2) — F(ai,ba;t1,t2) + F(ai,az;ti,ta)
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Conditional CDF and PDF

Conditional CDF at time ty €  given that the process X had
value z1 at time ¢t; € 7 is defined as

F(]fz,tg’.’l?htl) = P(X(tg) < 332|X(t1) = :L‘l)

Conditional PDF is the derivative of conditional CDF:

8F(IL‘2, t2|$1, 751)
Oza ’

f(xa, to]z1,t1) = heT, theT

f(x1, a3 t1,t2)
f(.%'l,tl)
f(x1, xa5t1,t2) = f(wo, ta]ar, tr) f(21, 1)

Conditional distributions are used in time series prediction tasks

f<x27 t2|$1,t1) —
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Joint CDF and PDF

The realization of two-dimensional process (X,Y) is a
two-dimensional trajectory (z(t1),y(t1)), (x(t2), y(t2)), ...

The joint CDF of two-dimensional process (X,Y) is defined as
Fxy(z,yit1,t2) = Fx(1)y(t) (%, Y)
= P(X(tl) < a:&Y(tg) < y)7 t € y, to € T

The joint PDF of two-dimensional process (X,Y) is defined as the
second derivative of the joint CDF:

O*Fxy (z,y;t1,t2)
0xdy ’

Ixy(z,y;t1,t2) = the I, tae T
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

2-D Time Series. lllustration

Brownian motion

<

/@

?
\
)
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Autocovariance and Autocorrelation

Autocovariance of time series X is a deterministic function
C(tl,tg), t € y, to € 9, defined as

c(t1, t2) = cov(X (1), X (t2)) = M{(X (1) — m(t1))(X (t2) — m(t2))]
+00 +00

= / / (.I'(tl) — m(tl))(w(tg) — m(tg))f(fbl, T2, tl, tg)dxldl'g

—00 —00

Autocorrelation of time series X is the autocovariance of
standardized time series X:

X(tl) — m(tl) X(tg) — m(tg)) . C(tl,tg)
o(tr) 7 otz  a(t)o(t2)

p(ty,t2) = cov <
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Properties of Autocovariance and Autocorrelation

Autocovariance c¢(t1,t2) is the covariance between random variables
X(tl) and X(tg), the T, toe T

C(tl, tg) = C(tz, tl)

c(t,t) = a?(t)

|c(t1, t2)| < o(t1)o(ta) = /e(ty, tr)c(ta, ta)

X(t1) and X (t2) are independent = c¢(t1,t2) =0

c(ti,t2) =0 = X(t1) and X (t2) are linearly independent

Autocorrelation p(t1,t2) is the correlation between random
variables X (¢1) and X (t9), t1 € T, to € T

o p(t1,t2) = p(t2, 1)

e p(t,t) =1

o [p(t1,t2)| <1

@ X(t1) and X (t2) are independent = p(t1,t2) =0

@ p(ti,t2) =0 = X(t1) and X (t2) are linearly independent
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Cross-covariance and Cross-correlation

Cross-covariance of 2-D time series (X,Y") is a deterministic
function ny(tl,tg), t1 € T, ty € 7, defined as

exy (t1,t2) = cov(X (1), Y (t2))
400 00

= [ [ @)~ mx@))u(e2) — my(t2) v (o yitr, t)dady

—00 —O0

Cross-correlation of 2-D time series (X,Y) is the cross-covariance
of standardized time series X and Y:

X(tl)—mx(tl) Y(tQ)—Tny(tQ) _ CXy(tl,tg)
ox(t1) ’ oy (t2) ox(t1)oy(t2)

pxy (t1,t2) = cov [

pxy(tl,tg) is not symmetric; pxy(tl,tz)‘ < 1 for all t1,t9 € T,
pxy(t,t) can be less than 1, t € .7
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. A Definitions
Statistical Description of Random Process ] @l Bregaristen
2-nd Order Description

Multivariate CDF and PDF

Choose some finite set of times t1,...,t;, € T

For a set of corresponding random variables X (1), ..., X (t;) we
can specify their k-th order joint probability distribution functions

The k-th order CDF of a random signal X is defined as
F(.I'l, vy Ty tl, ceey tk> = FX(tl)...X(tk)(xlv ceey .Tk)

= P(X(tl) < :L‘l&&X(tk) < Ik)

The k-th order PDF of a random signal X is defined as the k-th
derivative of the k-th order CDF:

. 8’“F(:v1, ooy Ty tl, ...,tk)
- 8x16xk

f(.’L'l, ey Ty tl, ...,tk)
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Types of Stationarity
Ergodic Processes

Stationary Processes Stationarity and Ergodicity

Strict-Sense Stationary Process

A random process X is called stationary if its statistical properties
do not change by time

We need to specify which statistical properties are to be
time-invariant

Definition

A random process X is called strict-sense (or strong) stationary
(SSS) if all its finite order distributions are time invariant, i.e. joint
probability distributions of

X(t1), ..., X(tx) and X(t1+7),..., X(tg +7)

are the same for all &, all ¢1, ..., € Z and all time shifts 7 € 7:

flxr, oy xpity, o ty) = f(@1, ooy Tl t1 + 7, ooy te + 7)
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Types of Stationarity
Ergodic Processes

Stationary Processes Stationarity and Ergodicity

k-th Order Stationarity

Definition

A random process X is called k-th order stationary if its
distributions up to k-th order are time-shift invariant:

f@1, ozt o ty) = flon, .zt + 7,00t +7)

forall j=1,..,k all t1,...,t; € 7 and all time shifts 7 € .7

1-st order stationarity:
f(z,t) = f(z,t+71), Vr,te T NereX
2-nd order stationarity:

f($1,$2;t1,t2) = f($1,:132;t1+7’, t2—|—7’), VT, t1,t9 € 9,%51,932 ez
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Properties of 2-nd Order Stationary Processes

o First-order distributions f(z,t) are the same for all t € 7:
flz,t) = f(zx,t+71)= f(zx), VreT

Particularly,
m(t) = m = const
o?(t) = 0% = const
2-nd order stationarity = 1-st order stationarity

@ Second-order distribution f(x1,x9;t1,t2) depends only on
time shift ¢5 — #1:

flz1, 2o t1,t0) = f(x1, 20581 + 7,82+ 7), VreT
T:=—t1 = f(x1,22;t1,t2) = f(x1,22;0,l0—11) = f(21,22;7)
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Properties of 2-nd Order Stationary Processes

@ Autocovariance ¢(t1,t2) and autocorrelation p(t1,t2) depend
only on time shift 7 = t5 — #1:
c(ti,t2) = cov(X(t1), X (t2)) = cov(X(0), X (t2 — t1))
= C(O,tg — tl) = C(T)

Properties of autocovariance and autocorrelation functions
(ACF) of 2-nd order stationary process:

o (1) =c(=7),  p(r) =p(=T)
o [e(r)| <c(0) =02 [p(r)] < p(0) =1
co(r) _ er)

° P =" = o)
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Types of Stationarity
Ergodic Processes

Stationary Processes Stationarity and Ergodicity

Wide-Sense Stationary Random Process

A random process X is called wide-sense (or weak) stationary
(WSS) if its mean and autocovariance function are time-shift
invariant:

1) MIX(t)] =M[X(t+71)], VreT

2) ¢(t1,t2) is a function only of time difference 7 = t2 — 3

@ Expectation and variance of WSS process are constants:
m(t) = m = const
o?(t) = ¢(t,t) = ¢(0) = const

@ Autocorrelation function r(t1,t2) of WSS process depends
only on time shift 7 = t5 — #1:

p(t1,t2) = p(0,t2 — t1) = p(7)



Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Notes on WSS Processes

Wide-sense stationarity is a particular case of 2-nd order
stationarity

@ Autocovariance and autocorrelation functions of WSS process
are functions of |ty — #1]:

o(r) =e(=7), p(1) = p(=7)

SSS = 2-nd order stationarity = WSS. The converse is not
necessarily true

WSS process is not necessarily 1-st order stationary

1-st order stationary process is not necessarily WSS process

(]

SSS process sometimes is called “stationary process”
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Stationary Processes. lllustrations

Stationary Processes

Types of Stationarity
Ergodic Processes

Stationarity and Ergodicity
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Stationary Processes

Types of Stationarity
Ergodic Processes
Stationarity and Ergodicity

Non-Stationary Processes. lllustrations

(A) Stationary and trend-stationary process

(B) Process with a level shift
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0 50 100 150 200 0 50 100 150 200
(C) Process with a change in the variance (D) Unit root process
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Types of Stationarity
Stationary Processes Ergo.dic I?rocesses 00
Stationarity and Ergodicity

Example 1

Consider a time series X (t) = sin(V't), where V' is a random
variable, V.~ R(0,27) and t = 1,2, ...

A realization of time series

0.5

Amplitude

-0.5

L i L i

20 40 60 80 100 120 140 160 180 200
Time

For each realization {z(t),t = 1,2, ...} the frequency v is constant

over time
30 /73
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Example 1. Check WSS

Expectation of time series X:

2
m(t) = M[X(t)] = M[sin(Vt)] = % /sin(vt)dv = 2_77r1t cos(vt)
0
Variance of time series X:
27
o?(t) = D[X (t)] = D[sin(Vt)] = % /sinQ(vt)dv
T 1 0 sin(2v0t) \ |27
= = [ (1= cos(2ut))dv = — (v — 2
4T 0/ 4T < 2t ) 0
1 1
= E(Qﬂ‘ —0) = B
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Example 1. Check WSS

Autocovariance of time series X:

2

ct,t+717)=MXO)X(t+ 7)) = % /sin(vt) sin(vt + vT)dv
0

2
1
= — /(COS(U’T) — cos(2vt + vT))dv
47
0

V=21

:E -

1 (sin(vr)  sin(2vt + vT)
T 20+ 7

v=0

Note, that ¢(¢,t+7) = 0 (and the time series is WSS) if t = 1,2, ...

But if £ € [0, +00), then c(t,t + 7) depends on 7 and ¢ and the
process X is not WSS
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Example 1. Check SSS

Firstly, check 1-st order stationarity

Let's take two time points t; € {1,2,...} and t2 € {1,2,...} and
compare distributions of random variables

X(tl) = SiIl(th) and X(tg) == Sil’l(Vtg)

It can be shown that if random variable V' ~ R(0, 27), then
random variables sin(V'),sin(2V), ... have arcsine distribution

So, the random variables X (1), X(2), ... have the same distribution
= the time series X is 1-st order stationary
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Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Example 1. Check SSS

Check 2-nd order stationarity

The bivariate CDF at time points ¢t = 1 and t5 = 2:

F(z1,229;1,2) = P(X(1) < 11&X(2) < x2)
= P(sinV < z1&sin 2V < z3)

The bivariate CDF at time points ¢t = 2 and t5 = 3:

F(z1,22:2,3) = P(X(2) < 11&X (3) < a2)
= P(sin2V < z1&sin3V < x9)

For 2-nd order stationarity process these CDFs must be equal

A.T. Tpocdumos CTaumnoHapHble U 3prognveckne nNpoLecchl

34 /73



Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Example 1. Check SSS

Assume 1 = 29 = —

SIS

3 3
F(z1,20;1,2) = P sinV<—\2[&sin2V<—\[ 0

2
. V3. . V3
F(x1,29;2,3) =P sm2V<—7&sm3V<—7 >0
\\\ —sin(v)
N - - sin(2v)
= . sin(3v)
=4 . /
(2] \\ ’
I [ | I \_,v/\ ~_ = I
0 1 2 3 4 5 6

Hence, X is not 2-nd order stationary time series = X is not SSS
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Types of Stationarity
Stationary Processes Ergo'dic I?rocesses 00
Stationarity and Ergodicity

Example 2

Consider a time series

X(H) = X(t—1) Cos%t LU sin%t, X(1) = U(1)
where U(1),U(2 ), ... is are i.i.d. random variables, U(t) ~ N(0,1)
1,2,.

forallt=1,2,
A realization of time series

Amplitude
o

0 100 200 300 400 500
Time
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Example 2. Check 1-st Order Stationarity

Expectation of time series X:

m(1) = MIX(1)] = M[U(1)] =0

m(t) = M [X(t ~ 1) cos %t +U(t) sin 7;1

= M[X (t — 1)] cos %t + M[U (t)] sin %t =0 by induction

Variance of time series X:

0%(1) =D[X(1)] = D[U(1)] =1
s oot
o%(t)=D [X(t — 1) cos 5 + U(t)sin 2}

t t
= D[X(t — 1)] cos? % + D[U(t)] sin? % =1 by induction

All random variables X (1), X (2), ... are distributed as N (0, 1)
= the time series X is 1-st order stationary
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Example 2. Check WSS

Autocovariance of time series X at times ¢t and ¢ + 1:
cltt+1)=MXt)X(t+1)] =
=M [X(t) <X(t) cos@ +U(t+ l)sinﬂ(t;”)]
. mt Tt
=M [XQ(t) sin - + X(t)U(t+ 1) cos 2]
— _sin %tM[Xz(t)] + cos %tM[X(t)U(t +1)]
— —sin ZEDX (1) + MIX (0)]2) + cos %tM[X(t)]M[U(t 1]

2

Autocovarinace c¢(t,t + 1) € {—1,0,1} and depends on ¢
= time series X is not WSS
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Example 3

Consider a random process { X (t),t € [0,00)}, which has one of
four equally probable outcomes at any time ¢ € [0, c0):

X(t) € {—5sint,5sint, —5cost,5cost}

A realization of random process

Amplitude
o N »
—

g
N
T

1
£
T
—

0.5 1 1.5 2 2.5
Time

o
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Example 3. Check WSS

Expectation of process X:
1
m(t) = M[X(t)] = 1(—5sint +5sint — 5cost + H5cost) =0

Variance of process X:
25

25
o?(t) = DX (t)] = Z(sin2 t+sin®t + cos?t + cos’ t) = 5

Autocovariance of process X:
X(t+7)e{-bsin(t+7),5sin(t+7),—5cos(t +7),5cos(t + 1)}
ct,t+71)=MXH)X(t+T)]

= %(25 sin(t) sin(t + 7) 4 ... + 25cos(t) cos(t + 7)) =0, 7 #0

Autocovarinace ¢(t,t + 7) doesn't depend on ¢
= process X is WSS
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Example 3. Check SSS

X(t) € {—5sint,5sint, —5cost,5cost}
Firstly, check 1-st order stationarity

Let's take two time points t; = 0 and t2 = 7 and compare
distributions of random variables X (1) and X (¢2):

X(t1) € {0,-5,5}

e f-5:5)

These distributions are different (even though their mean is the
same), hence, the process X is not 1-st order stationary

= X is not SSS process
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Example 4

Consider a random process X (t) = A, where A ~ R(—1,1)

Some realizations of random process
1

0.5

0-

Amplitude

-0.5

R . . . .
0 1 2 3 4 5

Il
o

Expectation: m(t) = M[X (t)] = M[A]

Autocovariance: c(t,t + 1) = M[X ()X (t + 7)] = M[A?] = 1/3
1-st order PDFs: f(x,t) = f(z,t+7) = R(—1,1)
2-nd order PDFs: f(l‘l,l‘g,tl,tg) R( 1) X R( ), th,tg

Inductively, process X is SSS
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Jointly Stationary Processes

Two random processes X and Y are jointly WSS (or simply jointly
stationary), if

Q@ X is WSS
Q Y is WSS
© cxy(t1,t2) depends only on 7 =t — 3

Time shift 7 is called time lag

Properties of cross-covariance function cxy (7) and
cross-correlation function (XCF) pxy (7) of jointly stationary
processes X and Y:

@ cxy(7) and pxy(7) are not symmetric with respect to zero

o pxy(r)|<1forallTe T

@ pxy(0) can be less than 1
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Averaging of Stationary Process

The expectation m of stationary (WSS) process X doesn't depend

on t:
+oo
m=m(t) =M[X(t)] = / xf(z,t)dr for any timet e T

In practice, the PDF f(z,t) is usually unknown

How to estimate the expectation m using the observations of
stationary process X7

Stationary process can be averaged in two ways:

@ Ensemble averaging

@ Time averaging
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Ensemble Averaging and Time Averaging

Ensemble average of a random process X over realizations
21(t), oy xn(t), t € T

1 N
mﬂwzﬁgymw
n=1

Time average of continuous-time random process X over an
interval (1, t2):

2
_ 1
X:/Xwﬁ
to — 11
t1

Time average of time series X over a set of time moments
{tl,.“,tQ}:
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Averaging of Stationary Process. lllustration

Xa(t)

N AN T

Tl LT LY

=X\(r )| Statistics along realizations

"\/\/_\\“1 /\ /\/\/\,

Statistics along time

Xp(1)

XC(U /\v -’
7 N T —

Xp(ty)
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Time Average as Estimator

Ensemble average my(t) at any time moment ¢t € J is a
consistent estimator of m:

lim iy (t) =m

N—oo

In practice, we have only one realization {z(t),t € J}, of
stationary process X

In this case, the only way to estimate the expectation m is to use
time averaging of the realization {x(¢),t € 7}

Can the expectation m be estimated using time averaging of a
single realization {x(t),t € 7}7

To answer we need to analyse statistical properties of random
variable X as the estimator of expectation m: unbiasedness and
consistency
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Unbiasedness of Discrete-Time Average

Consider WSS time series {X(¢), t =1,2,...}

T
) - 1
Time averaged mean: Xy = T ;X(t)
Expectation of Xr:
1 & 1 & 1
[Xa) <3| 732 X()| = 7 S MIX () = £ Tm=m

Hence, the time averaged mean X7 is unbiased estimator of m

Sufficient condition of consistency:

T—oo

lim D[X7] =0

T—o0

A.T. Tpocdumos CTaumnoHapHble U 3prognveckne nNpoLecchl
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Variance of Discrete-Time Average

The variance of X7:

t=1
T 2 T 2
t=1 t=1
1 T T
= M 30D (X() = m)(X(s) - m)]
1 , t;l s=1 1 -
= 75 20 Y MIX () = m)(X(s) =m)] = =5 > " elt,s)
t=1 s=1 t=1 s=1
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Consistency of Discrete-Time Average

X is WSS = the ACF ¢(t, s) depends only on time shift 7 =t — s.

T
So, we'll sum > ¢(t, s) over diagonals of covariance matrix 7" x T
s=1
1 T 1 T-1
DIX7] = — > ) clt,s) = 72 [Te(0) + ) 2T = 7)e(7)
t=1 s=1 =1
T-1
c(0) 2
St /A T—
T + T2 p— C(T)( T)

The time averaged mean Xr is consistent, if
T—1

: o . 2
A, PR = i o 2, DT =) =0

The consistency of X is related to the properties of ACF ¢(7)
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Time Averaging for Continuous Processes

Consider continuous-time WSS process X (t), ¢t € (—o00, 00)

T/2
The time averaged mean: X = % / X (t)dt
~T/2
The expectation of X7:
T/2 T/2
M[X7] = / X(t / M[X me =m
—T/2 —T/2

Hence, the time averaged mean X7 is unbiased estimator of m

A.T. Tpocdumos CTaumnoHapHble U 3prognveckne nNpoLecchl 51 /73



Types of Stationarity
. Ergodic Processes
Stationary Processes Stationarity and Ergodicity

Variance of Continuous-Time Average

The variance of Xp:

) 1 [T/2 2
D[X7] = M[(X7 — m)?] = M <T » X(t)dt — m)

[/ 2
= M (/T/Q(X(t)—m)dt>

_ LM /m dt /m m)(X (s) — m)ds]

T/2 T/2
T/2 T2 T/2 [T/2
/ / c(t, s)dtds = 2/ / c(t — s)dtds
T/2.)-T)2 T J_ 12 )72
We can simplify double integration using the substitution 7 =¢ — s
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Variance of Continuous-Time Average

Boundaries:

T T T T
s € |:—2,2:| y t e |:—2,2:| = TG[—T,T]

For a fixed 7 € [T, T7:

t=7+s¢€ L L in (£ —I—T
=7+s max 7T 5 ,min 7Tt 3

pe ?t t=7-T/2
T/2 TR
T/2 0 T/2 o . ‘0 >
s T T/2’ T/2 T T
) )

-T/2 t=7+T/2
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Variance of Continuous-Time Average

- 1 [T/2 [T/
D[XT]—/ / c(t — s)dtds [t—s=r7]
T2 J_1s2 ) -1)2
1 7'+T/2 T/2
(/ i [ s [Car [ )
T T/2 T/2

- % ( /_ X o(r)dr /_TTZ/Z dt + /OT o(r)dr / 12/2 dt>
- (/_OTC(T)(T+T)dT+ /OT e(r)(T - T)d7>
_ le 11 o(r)(T = |7])dr

The consistency of X7 is related to the properties of ACF ¢(7)
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Ergodic Processes

A stationary process X is called ergodic if its statistical properties
can be deduced from a single, sufficiently long realization of the
process

We need to specify which statistical properties can be deduced

Definition

A stationary process X is called mean-ergodic if its time average
converges to the ensemble average:

XT —m
in the squared mean sense, i.e.

lim M[(X7 —m)?] =0

T—o0
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Consistency of Time Average and Mean-Ergodicity

As soon as time averaged mean X7 is unbiased estimator of m, the
mean-ergodicity condition

lim M[(X7 —m)?] =0

T—o0

is equivalent to the sufficient condition of consistency of Xr:

lim D[X7] =0

T—o0

Stationary process X is mean-ergodic = X7 is a consistent
estimator of m

The mean-ergodicity of stationary process X is related to the
properties of its ACF ¢(7)
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Ergodic Theorem

Ergodic theorem

Let's {z(t),t = 1,2,...} is a some realization of a WSS time series
X. Then the time average Z1 converges to its expectation m

1
hrn Ir = hm —Zx(t) =m

T—00 T—oo T

iff the time average of its autocovariation function converges to 0

when T' — o0:
1 IT
R P IPILLL
=] s=

Ergodic theorem gives necessary and sufficient condition of mean
ergodicity
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Sufficient Conditions of Mean Ergodicity

Criterion of mean-ergodicity for discrete-time WSS process:

T-1
_ 9
lim DX/ = lim — T 7)==
Jim D[X7] = lim 2;C(T)( ) =0

Some sufficient conditions of ergodicity:
@ Independence of X (t) and X (¢ + 7) for all ¢ when increasing
the time shift 7
@ ¢(r)=0forall 7 > 7
e lim ¢(7)=0

T—00

li T =
o lim Y sy le(T)] = const < oo

’ﬂ
’ﬂ
’ﬂ
,_.

-1

)T —7)= 2
1 T
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Slutsky’s Theorem (1938)

A.T. Tpocdumos CTaumnoHapHble U 3prognYeckne nNpoLecchl

Slutsky’s Theorem

A continuous-time WSS process {X (t),t € (—o0,00)} is
mean-ergodic iff

T

lim 1/C(T)d7':0

T—oo 1
-T

A discrete-time WSS process { X (¢),t = 1,2,...} is mean-ergodic iff

Slutsky's theorem gives necessary and sufficient condition of
mean-ergodicity
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Estimation of Autocovariance

Covariance of WSS time series X:
e(r) =M[(X(t) —m)(X(t+7)—m)], Vte{l,2,..}
The covariance of process X at time shift 7 is equal to the mean of
process Y, (t) = (X(t) —m)(X(t+7) —m), t € {1,2,...}:
c(r) =M[Y-(t)], 7=0,1,2...

If m is unknown, its estimation is used
Ensemble averaged covariance:

. 1 o ) )

en(r) =+ ;(fﬂn(t) — ) (@n(t +7) — 1y)
Time averaged covariance over set {1,...,T}:

) 1 T—1

er(r) = o D (X(t) = Xp)(X(t +7) — Xr)
=1
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Autocovariance-Ergodic Processes

A WSS random process is autocovariance-ergodic (ergodic with
respect to autocovariance) if its autocovariance function can be
obtained from its any single realization

Definition

A WSS random process X is called autocovariance-ergodic if its
time average estimate of autocovariance converges to the true
autocovariance for all 7 € 7

ér(r) = (1)
in the squared mean sense, i.e.

lim M [(ér(r) —c()?] =0 VreI

T—oo
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Criterion of Covariance-ergodicity

Criterion of mean-ergodicity of WSS time series X:

Covariance-ergodicity of time series X is equivalent to
mean-ergodicity of all time series Yy, Y1, ..., where

Y ={Y:(t),t €{1,2,...}} and
Yr(t) = (X({t)—m)(X(t+71)—m), T€{0,1,...}
Criterion of covariance-ergodicity of WSS time series X:

li (t, =0,1,..
Tl—I};oTZ;SZCYT s)=0, Vr=0,1,

A.T. Tpocdumos CTaumnoHapHble U 3prognveckne nNpoLecchl
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Notes on Covariance-ergodicity

@ In order to check whether {Y;(¢),t =1,2,...}, is
mean-ergodic, it is necessary to require it be WSS for all
7=0,1,..

@ Autocovariance of process Y;(t) is the expectation that
depends on random variables X (¢) in four points in time.
Therefore, it is not enough to require that X be WSS, but a
stronger requirement of 4-th order stationary is needed

@ Variance-ergodicity of process X is a particular case of
covariance-ergodicity when 7 =0

@ Cross-covariance-ergodicity of processes X and Y means that
their cross-covariance function can be obtained from any single
realization of two-dimensional process (X,Y)
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Why Ergodicity?

Random process is a set of random variables X (¢1), X (t2), ...

We need ensemble of realizations x1(t),...,zn(t), t € 7, to
estimate statistical characteristics of these random variables

What is wrong with averaging over the ensemble of
realizations?

@ A huge amount of data is required

@ Sometimes it is not just laborious, but impossible to obtain
many realizations of the random process. Many experiments
cannot be repeated even twice (e.g. change of climate on
Earth, stock time series)

Ergodicity allow us to obtain statistical characteristics of random
process X from any of its single realizations {x(t),t € 7}

For ergodic processes the averaging over time can be used
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Stationarity and Ergodicity

Ergodicity always mean stationarity. There is no ergodicity without
stationarity

RandomProcesses

Random process can be stationary and not ergodic
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Types of Processes

Random process

|

Stationary MNonstationary ‘

Ergodic Non-ergodic ‘ Non-stationary processes types

Types of non-stationarities:

@ Non-stationarity in mean (trend)
@ Non-stationarity in variance

@ Non-stationarity in autocovariance
°
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Mean and Covariance Ergodicity. Example

Consider a random process X (t) = cos(wt + ¢), t € [0,00), where
w and ¢ are random variables:

w~ R(8;12), © ~ R(0; 2m)

Some realizations of random process

RGRE

0

0.

Amplitude
o [$)]

o
o

Time
Each realization has different frequency w (but constant over time)
and different initial phase ¢
67 / 73
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Example. Check WSS

Conditions of WSS:

@ Expectation m = const
21 12

11
m = M[cos(wt + )] = //cos(wt + @)Q—Zdwdgo =0
T
0 8

2 — const

@ Variance o
02 = D[cos(wt + ¢)] = M[cos?(wt + ¢)] = 1/2
e Covariance ¢(t,t + 7) depends only on 7
c(t,t+7)=M[X(t)X(t+ 7)] = Mcos(wt + ¢) cos(wt + wT + ¢)]
1
=3 (sin(127) —sin(87)), 7 #0
-

Expectation m = const, ACF ¢(t,t + 7) depends only on 7
= the process X is WSS
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Example. Check Mean-Ergodicity

Let's z(t) to be a realization of process X

Check if the process X is ergodic w.r.t. mean:

T/2
X 1 /2
= / cos(wt + p)dt = T sin(wt + ) s
~T/2

1 . wT+ . wT+
= — (sin| — —sin | ——

T 9 ¥ g ¥
2 sin %—H&—i—%—cﬁ Cos %—HD_%—HP
wT 2 2

2 T
= —sin <w2> cosp -0 when T — o0

Il
n

T — 0 = m = the process X is ergodic w.r.t. mean
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Example. Check Autocovariance-Ergodicity

Check if the process is ergodic w.r.t. covariance:

1 [T/2
er(tt+71) = T / ) cos(wt + @) cos(w(t + 7) + @)dt
T/2

/ (cos(2wt + wT + 2¢) + cos(wT))dt
T/2

1 T/2

'ﬂ"‘ H‘“

sin(2wt 4+ wt + 2¢) + t cos(wT)
—T/2

‘ -

1
[sin(wT + w7 + 2¢) — sin(—wT + wT + 2¢)] + 5 cos(wT)

o
N

W

— —cos(wr) when T — o0

N | =

er(t) = §cos(wr) # o(1) = &= (sin(127) — sin(87))
= the process X is not ergodic w.r.t. covariance
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Why Some WSS Processes Are Not Ergodic?

Ergodicity is the property by which each realization of a given
stationary process is a complete and independent representative of
all possible realizations of the process

For non-ergodic process its realizations carry information only
about the given realization and not about the underlying process

For non-ergodic processes the amplitudes at further time moments
don't carry any new information about process (because of high
correlation with amplitudes at previous time moments)

For ergodic processes a strength of dependence between random
variables in the process diminishes the farther apart they become. It
results to retrieving new information from observations at further
time moments
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Notes on Stationarity and Ergodicity Tests

When determining the stationarity and ergodicity we used the
known model of the process X

How to test stationarity if the model of the process is
unknown?

@ Visual analysis of time series
Look at any obvious trends, seasonality, changes in variance,
disruptions etc.

@ Moving summary statistics
Partitioning the time series into time intervals and check for
obvious or significant differences in summary statistics

@ Statistical tests

Perform statistical tests under the null hypothesis of
stationarity

A.T. Tpocdumos CTaumnoHapHble U 3prognveckne nNpoLecchl
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Notes on Stationarity and Ergodicity Tests

All definitions of stationarity and ergodicity are applied to the
processes that can be observed for an infinitely long time
However, in practice, any process can be observed only during a
finite time interval. It might lead one to wrong conclusions about
statistical properties of signal

The mean of process seems to be
floating in time

The mean of process is constant

“0 10 20 30 40 50
1, sec

If we have only one realization of the process, there is no means to
check ergodicity formally. In practice, we just hope that the process
is ergodic
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