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Neural Network Training Problem

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

𝑥(𝑖) =
(︁
𝑥
(𝑖)
1 , ..., 𝑥

(𝑖)
𝑀

)︁𝑇
— 𝑖-th input vector, 𝑖 = 1, ..., 𝑛

𝜎(𝑖) =
(︁
𝜎
(𝑖)
1 , ..., 𝜎

(𝑖)
𝐾

)︁𝑇
— 𝑖-th target vector, 𝑖 = 1, ..., 𝑛

Problem:
The training of neural network 𝐹 is the minimization of mean loss
𝐿 over data sample 𝒟 :

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿
(︁
𝐹, (𝑥(𝑖), 𝜎(𝑖))

)︁
→ min

𝑤

If the neural network has acceptable error on training sample
𝒟 , does it mean acceptable error on some other data
sample?
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Generalization, Underfitting and Overfitting

Definition
Generalization of the model is its ability to accurately predict
responses for previously unseen data

Underfitting: model cannot capture the underlying trend or patterns
in the data
Overfitting: model describes random error or noise instead of the
underlying relationship

Alexander Trofimov Generalization in Neural Networks 3 / 49



Estimating the Generalization
Improving the Generalization

Generalization of Trained Model
Bias-Variance Decomposition
Cross-Validation

Estimating the Generalization

How to measure generalization of a model?

To measure the generalization we need unseen data

Available data sample should be partitioned into “seen” and
“unseen” parts

Training data is used to fit the model

Validation data is used to test the generalization ability of the
trained models and select the best one

Test data is used to final accuracy estimation of the model

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡

𝒟𝑇𝑟 = 𝒟𝑇 ∪ 𝒟𝑉
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Training, Validation and Test Samples

Validation sample is considered to be a part of training process
Alexander Trofimov Generalization in Neural Networks 5 / 49



Estimating the Generalization
Improving the Generalization

Generalization of Trained Model
Bias-Variance Decomposition
Cross-Validation

Expectation of Quadratic Loss

Suppose that 𝜎 is an observation of random variable 𝑆 at given 𝑥

𝐹 (𝑥) — response of the model 𝐹 at given 𝑥 (determined)
𝑆 = 𝑓(𝑥) — value of target function 𝑓 at given 𝑥 (random)

Expectation of quadratic loss function 𝐿(𝐹, (𝑥, 𝑆)) at given 𝑥:

M[𝐿(𝐹, (𝑥, 𝑆))|𝑥] = M
[︀
(𝐹 (𝑥) − 𝑆)2|𝑥

]︀
= 𝐹 2(𝑥) − 2𝐹 (𝑥)M[𝑆|𝑥] + M[𝑆2|𝑥]

= 𝐹 2(𝑥) − 2𝐹 (𝑥)M[𝑆|𝑥] + D[𝑆|𝑥] + (M[𝑆|𝑥])2

= (𝐹 (𝑥) − M[𝑆|𝑥])2 + 𝜎2
𝑥

(𝐹 (𝑥) − M[𝑆|𝑥])2 — error of model 𝐹 at given 𝑥

𝜎2
𝑥 = D[𝑆|𝑥] — noise, doesn’t depend on 𝒟 or 𝐹

𝐹 (𝑥) = M[𝑆|𝑥] ⇔ 𝐹 (𝑥) is a regression function 𝑆 on 𝑥
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Bias-Variance Decomposition

Expectation of quadratic loss at given 𝑥:

M[𝐿(𝐹, (𝑥, 𝑆))|𝑥] = (𝐹 (𝑥) − M[𝑆|𝑥])2 + 𝜎2
𝑥

The neural network 𝐹 trained on training data 𝒟𝑇 depends on 𝒟𝑇 :
𝐹 (𝑥,𝒟𝑇 ) — response of the neural network 𝐹 trained on random
sample 𝒟𝑇 at given 𝑥

Expectation over all random samples 𝒟𝑇 :

M
[︁
(𝐹 (𝑥,𝒟𝑇 ) − M[𝑆|𝑥])2

]︁
= M

[︀
𝐹 (𝑥,𝒟𝑇 )2

]︀
− 2M[𝐹 (𝑥,𝒟𝑇 )]M[𝑆|𝑥] + M[𝑆|𝑥]2

= D [𝐹 (𝑥,𝒟𝑇 )] + M[𝐹 (𝑥,𝒟𝑇 )]2 − 2M[𝐹 (𝑥,𝒟𝑇 )]M[𝑆|𝑥] + M[𝑆|𝑥]2

= (M[𝐹 (𝑥,𝒟𝑇 )] − M[𝑆|𝑥])2 + D [𝐹 (𝑥,𝒟𝑇 )]

(M[𝐹 (𝑥,𝒟𝑇 )] − M[𝑆|𝑥]) — statistical bias of model 𝐹 at given 𝑥
D [𝐹 (𝑥,𝒟𝑇 )] — variance of model 𝐹 over training samples 𝒟𝑇
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Bias-Variance Trade-off

Expectation of loss 𝐿 at given 𝑥 over training samples 𝒟𝑇 :

M[𝐿(𝐹, (𝑥, 𝑆))|𝑥] = (M[𝐹 (𝑥,𝒟𝑇 )] − M[𝑆|𝑥])2 + D [𝐹 (𝑥,𝒟𝑇 )] + 𝜎2
𝑥

= 𝐵𝑖𝑎𝑠2[𝐹 (𝑥)] + 𝑉 𝑎𝑟[𝐹 (𝑥)] + 𝜎2
𝑥

Three sources of error:

𝐵𝑖𝑎𝑠2[𝐹 ] — error due to incorrect neural network architecture
or its complexity
𝑉 𝑎𝑟[𝐹 ] — error due to variance of training samples (inability
to perfectly estimate neural network’s parameters from limited
and noisy data)
𝜎2
𝑥 — unavoidable error (doesn’t depend on neural network)

The architecture and complexity of neural network determines
trade-off between bias and variance
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Bias-Variance Trade-off. Illustration 1

Overfitting Underfitting Good balance

High variance leads to overfitting
High bias leads to underfitting

Low neural network complexity ⇒ high bias, low variance
High neural network complexity ⇒ low or high bias, high
variance

Appropriate neural network complexity leads to low bias, low
variance
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Bias-Variance Trade-off. Illustration 2

Dartboard = space of models
Bullseye = target function
Darts = learned models
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Bias-Variance Trade-off. Illustration 3
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Generalization and Model Complexity

Generalization of model depends on its complexity
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Estimation of Model Error

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡 — available data
𝐹 — model trained on training sample 𝒟𝑇

How to estimate the error of model 𝐹 on unseen data?

𝐸(𝐹 ) — true error of model 𝐹 on unseen data

𝐸*
𝑇 (𝐹 ), 𝐸*

𝑉 (𝐹 ), 𝐸*
𝑇𝑠𝑡(𝐹 ) — empirical errors (e.g. MSE) over train,

validation and test samples

𝐸*
𝑇 (𝐹 ) — this estimate is optimistic (i.e. biased)

𝐸*
𝑉 (𝐹 ) — validation sample 𝒟𝑉 was used in training process

𝐸*
𝑇𝑠𝑡(𝐹 ) — estimation of model error over unseen examples

𝐸*
𝑇𝑠𝑡(𝐹 ) looks good estimation but...

a single training and test sets
used don’t tell us how sensitive error is to particular training and
test samples
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Partitioning the Data

Solution: repeatedly partitioning the available data 𝒟 into training
and test sets

𝐹𝑖 — neural network trained on training data from 𝑖-th partition
𝐸*

𝑇𝑠𝑡(𝐹1), ..., 𝐸
*
𝑇𝑠𝑡(𝐹𝑘) — estimations of error for models 𝐹1, ..., 𝐹𝑘
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Cross-Validation Techniques

Definition
Cross-validation (CV) is a model evaluation technique used to
assess a machine learning algorithm’s performance in making
predictions on new datasets that it has not been trained on

Cross validation techniques:
Repeated random sub-sampling (Monte-Carlo CV)
𝑘-fold
Holdout
Leave-one-out (LOOCV)
Resubstitution

Resubstitution does not partition the data, uses the training data
for validation
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Repeated Random Sub-sampling CV

Whole data is randomly partitioned into training and test
subsamples 𝑘 times in specified proportion

Sample of errors: 𝐸*
𝑇𝑠𝑡(𝐹1), ..., 𝐸

*
𝑇𝑠𝑡(𝐹𝑘)
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𝑘-fold CV

Whole data is randomly partitioned into 𝑘 equal sized subsamples
(folds). One of 𝑘 folds is retained as the test data, and the
remaining 𝑘 − 1 folds are used as training data

Sample of errors: 𝐸*
𝑇𝑠𝑡(𝐹1), ..., 𝐸

*
𝑇𝑠𝑡(𝐹𝑘)
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Leave-one-out CV

LOOCV is particular case of 𝑘-fold CV when 𝑘 = 𝑛

Sample of errors: 𝐸*
𝑇𝑠𝑡(𝐹1), ..., 𝐸

*
𝑇𝑠𝑡(𝐹𝑛)
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Holdout CV

Whole data is randomly partitioned into two sets: training and test
subsamples in specified proportion

Sample of errors: 𝐸*
𝑇𝑠𝑡(𝐹 )
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Stratified sampling

The test subsets (folds) are selected so that the mean response
value is approximately equal in all the folds

In the case of a classification, stratified cross-validation keep the
distribution of class labels in each fold

In practice: first stratify instances by class, then randomly select
instances from each class proportionally
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True error estimation

Whenever we use multiple training sets, as in 𝑘-fold CV and random
sub-sampling CV, we are evaluating neural network architecture and
learning algorithm, no individual learned neural network 𝐹

The true error 𝐸𝑇𝑠𝑡 is the error when tested on the entire
population of data instances

Sample of errors: 𝐸*
𝑇𝑠𝑡(𝐹1), ..., 𝐸

*
𝑇𝑠𝑡(𝐹𝑘)

Point estimator: 𝐸𝑇𝑠𝑡 = 1
𝑘

∑︀𝑘
𝑖=1𝐸

*
𝑇𝑠𝑡(𝐹𝑖)

Variance: 𝑠2[𝐸𝑇𝑠𝑡] = 1
𝑘

∑︀𝑘
𝑖=1(𝐸

*
𝑇𝑠𝑡(𝐹𝑖) − 𝐸𝑇𝑠𝑡)

2

The cross-validation estimator 𝐸𝑇𝑠𝑡 is very nearly unbiased for 𝐸𝑇𝑠𝑡

The variance 𝑠2[𝐸𝑇𝑠𝑡] can be reduced by increasing the size of test
set
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Internal Cross-Validation

Instead of a single validation set, we can use cross-validation within
a training set (e.g. to find meta-parameters and select a model)
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Improving Generalization

Too low complexity ⇒ the network is unable to fit training data

The larger network you use, the more complex the functions the
network can create

Too high complexity ⇒ the network tends to memorize the training
examples, but it has not learned to generalize to new data

It is difficult to know beforehand how large a network should be for
a specific application

Methods for improving generalization:

Reduce complexity of the neural network
Increase amount of the training data
Regularization
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Regularization Techniques

Definition
Regularization is a process of introducing additional information
into the learning process, reducing the possible space of appropriate
solutions and preventing overfitting

Regularization techniques:

𝐿2 weight regularization
𝐿1 weight regularization
Early stopping
Data augmentation
Noise injection
Dropout
Batch normalization
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𝐿2 Weight Regularization

The idea of 𝐿2 weight regularization is to add 𝐿2 regularization
term to the objective:

𝐸(𝑤) = 𝐸0(𝑤) +
𝜆

2𝑚
||𝑤||22 = 𝐸0(𝑤) +

𝜆

2𝑚

𝑚∑︁
𝑖=1

𝑤2
𝑖 → min

𝑤

where 𝐸0(0) is mean loss function over training sample,
𝜆 > 0 is a regularization parameter

Other implementation:

𝐸(𝑤) = (1 − 𝜆)𝐸0(𝑤) +
𝜆

2𝑚
||𝑤||22 → min

𝑤

where 0 < 𝜆 < 1 is a regularization parameter

Regularization parameter 𝜆 is additional hyper-parameter to the
training process
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Gradient of 𝐿2-Regularized Objective

Gradient of regularized objective:

∇𝐸(𝑤) = ∇𝐸0(𝑤) +
𝜆

𝑚
𝑤

Gradient descent:

𝑤(𝜏 + 1) = 𝑤(𝜏) − 𝛼∇𝐸(𝑤(𝜏)) = 𝑤(𝜏) − 𝛼

(︂
∇𝐸0(𝑤(𝜏)) +

𝜆

𝑚
𝑤(𝜏)

)︂
= 𝑤(𝜏) − 𝛼∇𝐸0(𝑤(𝜏)) − 𝛼𝜆

𝑚
𝑤(𝜏)

=

(︂
1 − 𝛼𝜆

𝑚

)︂
𝑤(𝜏) − 𝛼∇𝐸0(𝑤(𝜏))

This is the same as the usual gradient descent learning rule, except
we first rescale the weights 𝑤(𝜏) by a factor

(︀
1 − 𝛼𝜆

𝑚

)︀
𝐿2 weight regularization is also called weight decay
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𝐿1 Weight Regularization

The idea of 𝐿1 weight regularization is to add 𝐿1 regularization
term to the objective:

𝐸(𝑤) = 𝐸0(𝑤) +
𝜆

𝑚
||𝑤||1 = 𝐸0(𝑤) +

𝜆

𝑚

𝑚∑︁
𝑖=1

|𝑤𝑖| → min
𝑤

where 𝐸0(0) is mean loss function over training sample,
𝜆 > 0 is a regularization parameter

Other implementation:

𝐸(𝑤) = (1 − 𝜆)𝐸0(𝑤) +
𝜆

𝑚
||𝑤||1 → min

𝑤

where 0 < 𝜆 < 1 is a regularization parameter

Regularization parameter 𝜆 is additional hyper-parameter to the
training process
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Gradient of 𝐿1-Regularized Objective

Gradient of regularized objective:

∇𝐸(𝑤) = ∇𝐸0(𝑤) +
𝜆

𝑚
sgn(𝑤)

Gradient descent:

𝑤(𝜏 + 1) = 𝑤(𝜏) − 𝛼∇𝐸(𝑤(𝜏))

= 𝑤(𝜏) − 𝛼

(︂
∇𝐸0(𝑤(𝜏)) +

𝜆

𝑚
sgn(𝑤(𝜏))

)︂
= 𝑤(𝜏) − 𝛼∇𝐸0(𝑤(𝜏)) − 𝛼𝜆

𝑚
sgn(𝑤(𝜏))

=

(︂
𝑤(𝜏) − 𝛼𝜆

𝑚
sgn(𝑤(𝜏))

)︂
− 𝛼∇𝐸0(𝑤(𝜏))

This is the same as the usual gradient descent learning rule, except
we first shrink the weights 𝑤(𝜏) by a value 𝛼𝜆

𝑚
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𝐿2 vs 𝐿1 Regularization

𝐿2 regularization:

𝑤(𝜏 + 1) =

(︂
1 − 𝛼𝜆

𝑚

)︂
𝑤(𝜏) − 𝛼∇𝐸0(𝑤(𝜏))

𝐿1 regularization:

𝑤(𝜏 + 1) =

(︂
𝑤(𝜏) − 𝛼𝜆

𝑚
sgn(𝑤(𝜏))

)︂
− 𝛼∇𝐸0(𝑤(𝜏))

Both methods penalize large weights and shrink them toward zero
but using different ways:

𝐿2 regularization shrinks the weights by an amount which is
proportional to 𝑤
𝐿1 regularization shrinks the weights by a constant amount

𝑤 is large ⇒ 𝐿2 shrinks more than 𝐿1

𝑤 is small ⇒ 𝐿1 shrinks more than 𝐿2
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𝐿2 vs 𝐿1 Regularization. Illustration

𝐿1 regularization tends to concentrate the neural network’s
parameters in a relatively small number of high-important weights,
while the other weights are driven toward zero
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Early Stopping

The idea of early stopping is in stopping training process before the
objective reaches its minimum

Available data: 𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡

The error on the validation set 𝒟𝑉 should be monitored during the
training process

The validation error 𝐸*
𝑉 (𝐹 ) normally decreases during the initial

phase of training, as does the training set error 𝐸*
𝑇 (𝐹 )

When the network begins to overfit the data, the error on the
validation set begins to rise

Early stopping rule:
When the validation error 𝐸*

𝑉 (𝐹 ) increases for a specified number
of iterations the training process should be stopped, and the weights
and biases are returned at the minimum of the validation error
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Early Stopping. Illustration
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Data Augmentation

The idea of data augmentation is in generation of new training
examples using some transformation function 𝑔(𝑥, 𝜗) applied to the
existing examples in the training set 𝒟𝑇

The transformation function 𝑔(𝑥, 𝜗) depends on the problem and
incorporates knowledge about it into the learning algorithm

For image classification task: scaling, rotation, flipping, adding
blur, etc.

Notes:

Unlike other regularization methods, data augmentation does not
reduce the model complexity

The main drawback is increased learning time

Augmented data can be generated on the fly to use it in stochastic
gradient descent and to avoid storing all the additional data in
memory
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Data Augmentation. Illustration

Training curves of a network trained on Dogs-vs-Cats images
dataset*

Augmented data: flipped and rotated images

*https://www.kaggle.com/c/dogs-vs-cats
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Noise Injection

The idea of noise injection is in adding some random noise to
inputs and/or gradients:

𝑥
(𝑝)
𝑗 := 𝑥

(𝑝)
𝑗 + 𝜀 or

𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑖
:=

𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑖
+ 𝜀

where 𝜀 ∼ 𝑁(0, 𝜎), 𝜎 is the standard deviation of noise

Notes:

Adding noise can make the neural network more robust to the
variations in input vector
Noise can be added on the fly before each iteration of training
process
Adding gradient noise makes networks more robust to poor
initialization and gives the model more chances to escape the
local minima
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Dropout

The idea of dropout is in excluding randomly chosen neurons from
the network at each training iteration

Dropout applied to 𝑙-th layer of neurons:
1 Generate a vector 𝑣𝑙 = (𝑣𝑙1, ..., 𝑣𝑙𝑁𝑙

)𝑇 , where each element is
sampled from the Bernoulli distribution 𝐵(1, 𝑝), 𝑣𝑙 ∈ {0, 1}𝑁𝑙

2 On the forward pass multiply the values 𝑦𝑙 by this vector
(element-wise), 𝑙 = 1, ..., 𝑁𝑙

3 On the backward pass multiply the gradients 𝜕𝐸
𝜕𝑦𝑙

by this vector
(element-wise), 𝑙 = 1, ..., 𝑁𝑙

A new random subset of neurons to delete is chosen after every
update of weights:

for batch training – after every epoch
for mini-batch training – after every mini-batch
for stochastic training – after every training example
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Dropout. Illustration

Droupout applied to 𝑙-th layer can be implemented as additional
layer of neurons with non-trainable random binary weights 𝑣𝑙
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Dropout at Test Phase

After training process the weights and biases of 𝑙-th layer will have
been learnt under conditions in which only 𝑝𝑁𝑙 the hidden neurons
were present (at average)

At test phase all neurons are present in the network

To compensate for that, the weights outgoing from the 𝑙-th layer
should be multiplied by 𝑝
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Why Does Dropout Work?

Training a neural network with dropout can be seen as training a
collection of 2𝑁 thinned networks with parameters sharing (𝑁 is
the number of neurons under dropout), where each thinned network
gets trained very rarely, or not at all

Most of the thinned models, in fact, will never be used. Those
which are used will likely get only one training example, which
make it an extreme form of bagging

This thinned models will overfit in different ways, and so, hopefully,
the net effect of dropout (averaging) will be to reduce overfitting

The dropout reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons. It
is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other
neurons
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Some Notes on Dropout

Dropout parameter 𝑝, 0 < 𝑝 < 1, is additional
hyper-parameter to the training process. The standard choice
of the dropout probability is 𝑝 = 0.5, so the method does not
typically require hyper-parameter tuning
Dropout is typically applied to the hidden layers but also can
be applied to network’s inputs (with higher 𝑝)
For the network’s inputs introducing noise instead of dropout
might perform better
Dropout increases the number of iterations required to training
(for 𝑝 = 0.5 roughly doubles). However, training time for each
epoch is less
Dropout is very simple to implement, and demonstrates a
significant improvement on a large variety of tasks
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Intuitive Explanation of Dropout

Imagine that you have a team of workers and the overall goal is to
learn how to construct a building

When each of the workers is overly specialized, if one gets sick or
makes a mistake, the whole building will be severely affected

The solution proposed by dropout technique is to pick randomly
every week some of the workers and send them to business trip

The hope is that the team overall still learns how to build the
building and thus would be more resilient to noise or workers being
on vacation

The dropout technique has been first proposed in a paper "Dropout: A Simple Way to Prevent Neural
Networks from Overfitting"by N.Srivastava, G.Hinton, A.Krizhevsky, I.Sutskever and R.Salakhutdinov in
2014 (Journal of Machine Learning Research, 15, Pp. 1929-1958)
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Dropout. Illustration

Training curves of a network trained on Dogs-vs-Cats images
dataset*

*https://www.kaggle.com/c/dogs-vs-cats
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Internal Covariate Shift

The normalization of inputs (shifting inputs to zero-mean and unit
variance) is often used as a pre-processing step to make the data
comparable across features

It is known that network training converges faster if its inputs are
whitened –– i.e., linearly transformed to have zero means and unit
variances, and decorrelated

As the data flows through layers of the neural network, their
outputs can become too big or too small again

This effect is called internal covariate shift

Denormalized inputs of hidden layers make the training hard due to
possible saturation of non-linearities in activation functions

A way to reduce internal covariate shift is to normalize inputs of
hidden layers
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Batch Normalization

The idea of batch normalization is to normalize the outputs of each
layer to have zero mean and unit variance over each training batch:

𝑦
(𝑝)
𝑖 = 𝛾𝑖

𝑦
(𝑝)
𝑖 − 𝑦𝑖√︁
𝑠2𝑖 + 𝜀

+ 𝛽𝑖, 𝑖 = 1, ..., 𝑁𝑙

where 𝑦𝑖 and 𝑠2𝑖 are mean and standard deviation of 𝑖-th neuron’s
output 𝑦𝑖 over current training mini-batch,
𝜀 — smoothing term that avoids division by zero (usually 𝜀 ≃ 10−8),
𝛾𝑖 and 𝛽𝑖 — adjustable batch normalization parameters

Why we need adjustable parameters in batch normalization
They are introduced in order to guarantee that the normalization
procedure transforms the values only when it is necessary

Indeed, if 𝛾𝑖 =
√︁
𝑠2𝑖 + 𝜀 and 𝛽𝑖 = 𝑦𝑖 the batch normalization

performs identity transform
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Batch Normalization Layer

Batch normalization can be viewed as an additional layer in neural
network

The derivatives of training objective 𝐸(𝑤) w.r.t. parameters 𝛾 and
𝛽 can be obtained using the backpropagation algorithm
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Derivatives of Batch Normalization Layer

Model of batch normalization neuron:

𝑦
(𝑝)
𝑖 = 𝛾𝑖

𝑦
(𝑝)
𝑖 − 𝑦𝑖√︁
𝑠2𝑖 + 𝜀

+ 𝛽𝑖

Partial derivatives of training objective 𝐸(𝑤) w.r.t.
parameters 𝛾𝑖 and 𝛽𝑖:

𝜕𝐸(𝑝)(𝑤)

𝜕𝛾𝑖
=

𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

𝜕𝑦
(𝑝)
𝑖

𝜕𝛾𝑖
=

𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

𝑦
(𝑝)
𝑖 − 𝑦𝑖√︁
𝑠2𝑖 + 𝜀

𝜕𝐸(𝑝)(𝑤)

𝜕𝛽𝑖
=

𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

𝜕𝑦
(𝑝)
𝑖

𝜕𝛽𝑖
=

𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

where 𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

can be obtained using the backpropagation

algorithm through higher layers
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Backpropagation through Batch Normalization Layer

Partial derivatives of objective 𝐸(𝑤) w.r.t. inputs 𝑦
(𝑝)
𝑖 :

𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

=
𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

𝜕𝑦
(𝑝)
𝑖

𝜕𝑦
(𝑝)
𝑖

=
𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

𝛾𝑖√︁
𝑠2𝑖 + 𝜀

The partial derivatives 𝜕𝐸(𝑝)(𝑤)

𝜕𝑦
(𝑝)
𝑖

are to be used in backpropagation

through lower layers

After each training step (updating the neural network’s parameters)
the means 𝑦𝑖 and standard deviations 𝑠𝑖 should be updated

The outputs 𝑦(𝑝)𝑖 of batch normalization layer depends both on the
neural network’s input 𝑥(𝑝) and all other examples in current
mini-batch
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Batch Normalization Layer after Training

After training process:

𝑦𝑖 = 𝛾𝑖
𝑦𝑖 − 𝜇𝑖√︁
𝜎2
𝑖 + 𝜀

+ 𝛽𝑖

where 𝜇𝑖 and 𝜎𝑖 are mean and standard deviation estimated on the
entire training sample, 𝛽𝑖 and 𝛾𝑖 are trained parameters

The batch normalization layer can be viewed as a layer of linear
neurons:

𝑦𝑖 =
𝛾𝑖√︁
𝜎2
𝑖 + 𝜀

𝑦𝑖 +

⎛⎝𝛽𝑖 −
𝛾𝑖𝜇𝑖√︁
𝜎2
𝑖 + 𝜀

⎞⎠
Batch normalization increases the generalization of the neural
network and enables higher learning rates in training
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Batch Normalization. Illustration

Training curves of a network trained on Dogs-vs-Cats images
dataset*

*https://www.kaggle.com/c/dogs-vs-cats
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