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Neural Network Training Problem

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

𝑥(𝑖) =
(︁
𝑥
(𝑖)
1 , ..., 𝑥

(𝑖)
𝑀

)︁𝑇
— 𝑖-th input vector, 𝑖 = 1, ..., 𝑛

𝜎(𝑖) =
(︁
𝜎
(𝑖)
1 , ..., 𝜎

(𝑖)
𝐾

)︁𝑇
— 𝑖-th target vector, 𝑖 = 1, ..., 𝑛

Problem:
The training of neural network 𝐹 is the minimization of mean loss
𝐿 over data sample 𝒟 :

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿
(︁
𝐹, (𝑥(𝑖), 𝜎(𝑖))

)︁
→ min

𝑤

The training of neural network is a kind of optimization problem
with objective function 𝐸(𝑤). To resolve it optimization techniques
are used
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Gradient Descent

Idea:
Takes steps toward the negative gradient direction proportional to
its absolute value

Equations:
𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏))

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — step size (learning rate)

Notes:

The simplest gradient method
Fixed learning rate 𝛼

Low 𝛼 leads to time-consuming process, slow changing and
smooth optimization trajectory
High 𝛼 leads to oscillating or divergent optimization trajectory
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Gradient Descent. Illustration 1

Optimization process depends on initial point
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Gradient Descent. Illustration 2

The solution depends on initial point
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Steepest Gradient Descent

Idea:
Takes steps toward the negative gradient direction to the point of
conditional minimum at this direction

Equations (Cauchy, 1847):

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼(𝜏)∇𝐸(𝑤(𝜏))

Initial point 𝑤(0) = 𝑤0

The learning rate 𝛼(𝜏) is a solution of line search problem:

𝛼(𝜏) = argmin
𝛼>0

𝐸(𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)))

Notes:
Adaptive learning rate
Slow convergence on flat surfaces and ravines (areas where the
surface is much more steeply in one dimension than in another)
Requires solution of line search problem at each iteration
Steps toward orthogonal directions
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Steepest Gradient Descent. Illustration 1

Steps toward orthogonal directions
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Steepest Gradient Descent. Illustration 2

Slow convergence near the optimal point
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Gradient Descent with Momentum

Idea:
Takes steps toward the direction that is linear combination of
negative gradient and previous direction

Equations (Rumelhart, 1986):

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

Δ𝑤(𝜏) = 𝑤(𝜏)− 𝑤(𝜏 − 1)

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate,
𝜇 > 0 — momentum

Notes:
The momentum can be interpreted as ’inertia’ of descent
Acceleration on flat areas and slowdown on steep areas give
effect of adaptive learning rate
It’s unclear how to choose 𝛼 and 𝜇
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Gradient Descent with Momentum. Flat Areas

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

Δ𝑤(𝜏 + 1) = 𝑤(𝜏 + 1)− 𝑤(𝜏) = −𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

For flat areas:

∇𝐸(𝑤(𝜏)) ≈ ∇𝐸(𝑤(𝜏 − 1))

Δ𝑤(𝜏 + 1) = −𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

≈ −𝛼∇𝐸(𝑤(𝜏)) + 𝜇(−𝛼∇𝐸(𝑤(𝜏 − 1)) + 𝜇Δ𝑤(𝜏 − 1))

≈ −𝛼∇𝐸(𝑤(𝜏)) + 𝜇(−𝛼∇𝐸(𝑤(𝜏))+

+ 𝜇(−𝛼∇𝐸(𝑤(𝜏 − 2)) + 𝜇Δ𝑤(𝜏 − 2))) ≈ ...

≈ −𝛼∇𝐸(𝑤(𝜏))(1 + 𝜇+ 𝜇2 + ...) ≈ − 𝛼

1− 𝜇
∇𝐸(𝑤(𝜏))

The learning rate
𝛼

1− 𝜇
> 𝛼 ⇒ acceleration on flat areas
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𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)
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For ravines:
∇𝐸(𝑤(𝜏)) ≈ −∇𝐸(𝑤(𝜏 − 1))

Δ𝑤(𝜏 + 1) = −𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

≈ −𝛼∇𝐸(𝑤(𝜏)) + 𝜇(−𝛼∇𝐸(𝑤(𝜏 − 1)) + 𝜇Δ𝑤(𝜏 − 1))
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+ 𝜇(−𝛼∇𝐸(𝑤(𝜏 − 2)) + 𝜇Δ𝑤(𝜏 − 2))) ≈ ...

≈ −𝛼∇𝐸(𝑤(𝜏))(1− 𝜇+ 𝜇2 − ...) ≈ − 𝛼

1 + 𝜇
∇𝐸(𝑤(𝜏))

The learning rate
𝛼

1 + 𝜇
< 𝛼 ⇒ slowdown on ravines
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Gradient Descent with Momentum. Implementations

Implementation 1:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

Δ𝑤(𝜏) = 𝑤(𝜏)− 𝑤(𝜏 − 1)

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate,
𝜇 > 0 — momentum

Implementation 2:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼(1− 𝜇)∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

Δ𝑤(𝜏) = 𝑤(𝜏)− 𝑤(𝜏 − 1)

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate,
0 < 𝜇 < 1 — momentum
𝜇 = 0 ⇒ gradient descent with learning rate 𝛼
𝜇 = 1 ⇒ no sensitive to current gradient
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Gradient Descent with Momentum. Illustration

Faster convergence to the optimal point

Gradient descent:

Gradient descent with momentum:
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Nesterov Accelerated Gradient (NAG)

Idea:
Takes steps toward the direction that is linear combination of
“lookahead” negative gradient and previous direction

Equations (Nesterov, 1983):

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏) + 𝜇Δ𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

Δ𝑤(𝜏) = 𝑤(𝜏)− 𝑤(𝜏 − 1)

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate,
𝜇 > 0 — momentum

Notes:

Works slightly better than standard momentum especially for
higher values of 𝜇
It’s unclear how to choose 𝛼 and 𝜇
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NAG vs Standard Momentum

Momentum:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)

NAG:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑤(𝜏) + 𝜇Δ𝑤(𝜏)) + 𝜇Δ𝑤(𝜏)
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Nesterov Accelerated Gradient. Illustration

Results for oblong quadratic objective

The trajectories of GD (red), momentum (green), and Nesterov’s
accelerated gradient (blue). Both methods had 𝜇 set to 0.95. The global
minimum of the quadratic is in the center of the figure, at (0, 0)*
*Sutskever, I. (2013). Training Recurrent Neural Networks. PhD Thesis.

Alexander Trofimov Neural Networks Training 16 / 67



Gradient Descent Methods
2-nd Order Methods
Weight Initialization

1-st Order Gradient Descent Methods
Per-parameter Adaptive Learning Rate GD
Stochastic Gradient Descent

CGD (Conjugate Gradient Descent)

Idea:
Takes steps toward conjugate directions (so improves steepest
gradient descent where steps are orthogonal)

Equations:
𝑤(𝜏 + 1) = 𝑤(𝜏) + 𝛼(𝜏)𝑑(𝜏)

where 𝑑(0), 𝑑(1), 𝑑(2), ... — conjugate directions
Initial point 𝑤(0) = 𝑤0

The learning rate 𝛼(𝜏) is a solution of line search problem:

𝛼(𝜏) = argmin
𝛼>0

𝐸(𝑤(𝜏) + 𝛼𝑑(𝜏))

The only difference from the steepest gradient descent is in
direction 𝑑(𝜏) instead of −∇𝐸(𝑤(𝜏)) at each iteration 𝜏
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Conjugate Directions

Initial conjugate direction is direction of anti-gradient:

𝑑(0) = −∇𝐸(𝑤(0))

The next conjugate direction is determined as a linear combination
of current anti-gradient and previous conjugate direction:

𝑑(𝜏) = −∇𝐸(𝑤(𝜏)) + 𝛽(𝜏)𝑑(𝜏 − 1), 𝜏 = 1, 2, ...

Fletcher-Reeves algorithm (1964):

𝛽(𝜏) =
∇𝐸(𝜏)𝑇∇𝐸(𝜏)

∇𝐸(𝜏 − 1)𝑇∇𝐸(𝜏 − 1)
=

||∇𝐸(𝜏)||2

||∇𝐸(𝜏 − 1)||2

Polak–Ribiere algorithm (1969):

𝛽(𝜏) =
∇𝐸(𝜏)𝑇 (∇𝐸(𝜏)−∇𝐸(𝜏 − 1))

∇𝐸(𝜏 − 1)𝑇∇𝐸(𝜏 − 1)
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Conjugate Gradient Descent

Notes:

With a pure quadratic function the minimum is reached within
𝑚 iterations (𝑚 is the dimension of vector 𝑤)
It is recommended to reset search direction every 𝑚 iterations
to the direction of anti-gradient
For Polak–Ribiere algorithm it is recommended to choose:

𝛽(𝜏) := max{0, 𝛽(𝜏)}

𝛽(𝜏) = 0 means steepest gradient descent
Extremely effective in dealing with general objective functions
The computational cost is the same as for steepest gradient
descent
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Conjugate Gradient Descent. Illustration 1

Convergence for quadratic function (CGD vs steepest GD)
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Conjugate Gradient Descent. Illustration 2

Convergence for non-quadratic function

GD CGD
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Learning Rate Tuning

Line search used in steepest gradient descent and CGD is too
expensive for large training samples

Vanilla gradient descent uses constant learning rate that can be
inefficient for optimization

When training neural networks, it is often useful to change learning
rate as the training progresses

Approaches:

Learning rate schedules (annealing the learning rate)
The learning rate decays with according to the defined scheme
The system can cool too quickly, unable to reach the best
position
Adaptive learning rate methods
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Annealing the Learning Rate

Step decay
Reduce the learning rate by some factor every few epochs
(e.g., reducing the learning rate by a half every 5 epochs, or by
0.1 every 20 epochs.)
Exponential decay

𝛼(𝜏) = 𝛼0𝑒
−𝑘𝜏

1/𝜏 decay
𝛼(𝜏) =

𝛼0

1 + 𝑘𝜏

Learning rate schedules (methods of learning rate annealing)
impose additional hyperparameters to the training that depend
heavily on the type of model and problem

Another problem is that at each iteration the same learning rate is
applied to all parameter updates
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AdaGrad

Idea:
Modified gradient descent with per-parameter adaptive learning
rate, uses the cumulative squared gradient to adapt it

Equations (Duchi, Hazan, Singer, 2011):

𝑤𝑗(𝜏 + 1) = 𝑤𝑗(𝜏)− 𝛼𝑗(𝜏)
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

𝛼𝑗(𝜏) =
𝛼√︀

𝐺𝑗(𝜏) + 𝜀
, 𝑗 = 1, ...,𝑚

𝐺𝑗(𝜏) = 𝐺𝑗(𝜏 − 1) +

(︂
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

)︂2

, 𝜏 = 0, 1, ...

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — base learning rate
𝜀 — smoothing term that avoids division by zero (usually 𝜀 ≃ 10−8)
𝐺𝑗(𝜏) — cumulative squared partial derivative w.r.t. parameter 𝑤𝑗 ,
up to iteration 𝜏 , 𝐺𝑗(−1) = 0, 𝑗 = 1, ...,𝑚
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AdaGrad

Notes:

Uses a different learning rate for every parameter 𝑤𝑗 ,
𝑗 = 1, ...,𝑚

Extreme parameter updates get dampened, while parameters
that get few or small updates receive higher learning rates
Eliminates the need to manually tune the learning rate (usually
base learning rate 𝛼 = 0.01)
Accumulates the squared gradients in the denominator that
leads the learning rate to decrease and converge to zero
(monotonically decreasing learning rate)
Effective for objectives with sparse gradients
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RMSProp (Root Mean Square Propagation)

Idea:
Modified gradient descent with per-parameter learning rate, uses
the exponentially averaged squared gradient to adapt the learning
rate

Equations (Hinton, 2012):

𝑤𝑗(𝜏 + 1) = 𝑤𝑗(𝜏)− 𝛼𝑗(𝜏)
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

𝛼𝑗(𝜏) =
𝛼√︀

𝐺𝑗(𝜏) + 𝜀
, 𝑗 = 1, ...,𝑚

𝐺𝑗(𝜏) = 𝜌𝐺𝑗(𝜏 − 1) + (1− 𝜌)

(︂
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

)︂2

, 𝜏 = 1, 2, ...

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — base learning rate
𝜌 — forgetting factor, 0 < 𝜌 < 1, 𝐺(0) = (∇𝐸(𝑤(0)))2

𝜀 — smoothing term that avoids division by zero (usually 𝜀 ≃ 10−8)
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AdaDelta

Idea:
Modified gradient descent with per-parameter learning rate, uses
the acceleration term based on historical updates

Equations (Zeiler, 2012):

𝑤𝑗(𝜏 + 1) = 𝑤𝑗(𝜏)− 𝛼𝑗(𝜏)
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

𝛼𝑗(𝜏) =

√︀
𝐷𝑗(𝜏) + 𝜀√︀
𝐺𝑗(𝜏) + 𝜀

𝐺𝑗(𝜏) = 𝜌𝐺𝑗(𝜏 − 1) + (1− 𝜌)

(︂
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

)︂2

, 𝜏 = 0, 1, ...

𝐷𝑗(𝜏) = 𝜌𝐷𝑗(𝜏 − 1) + (1− 𝜌)(Δ𝑤𝑗(𝜏))
2, 𝜏 = 0, 1, ...

Initial point 𝑤(0) = 𝑤0, 𝜌 — forgetting factor, 0 < 𝜌 < 1
𝜀 — smoothing term that avoids division by zero (usually 𝜀 ≃ 10−8)
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AdaDelta

𝐺𝑗(𝜏) — exponentially averaged squared partial derivative w.r.t.
parameter 𝑤𝑗 , up to iteration 𝜏 , 𝐺𝑗(−1) = 0, 𝑗 = 1, ...,𝑚
𝐷𝑗(𝜏) — exponentially averaged squared difference Δ𝑤𝑗(𝜏),
Δ𝑤𝑗(𝜏) = 𝑤𝑗(𝜏)− 𝑤𝑗(𝜏 − 1), up to iteration 𝜏 , 𝐷𝑗(−1) = 0,
Δ𝑤𝑗(0) = Δ0𝑗 , 𝑗 = 1, ...,𝑚

Notes:
Uses a different learning rate for each parameter 𝑤𝑗

Implements exponentially decaying average of the squared
gradients (instead of cumulative squared gradients of AdaGrad)
Implements exponentially decaying average of the squared
updates in the numerator of learning rate
Doesn’t demonstrate the continual decay of learning rate
throughout training (as it is for AdaGrad)
Eliminates the need to manually tune the learning rate, do not
even need to set an initial learning rate
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Adam (Adaptive Moment Estimation)

Idea:
Modified gradient descent with per-parameter learning rate, uses
estimates of first and second moments of the gradient

Equations (Kingma (OpenAI), 2015):

𝑤𝑗(𝜏 + 1) = 𝑤𝑗(𝜏)− 𝛼𝑗(𝜏)𝑔𝑗(𝜏)

𝛼𝑗(𝜏) =
𝛼√︁

𝐺̂𝑗(𝜏) + 𝜀
, 𝑗 = 1, ...,𝑚

𝑔(𝜏) =
𝑔(𝜏)

1− 𝛽𝜏+1
1

, 𝐺̂(𝜏) =
𝐺(𝜏)

1− 𝛽𝜏+1
2

, 𝜏 = 0, 1, ...

𝑔𝑗(𝜏) = 𝛽1𝑔𝑗(𝜏 − 1) + (1− 𝛽1)
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗
, 𝜏 = 0, 1, ...

𝐺𝑗(𝜏) = 𝛽2𝐺𝑗(𝜏 − 1) + (1− 𝛽2)

(︂
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

)︂2

, 𝜏 = 0, 1, ...
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Adam (Adaptive Moment Estimation)

Initial point 𝑤(0) = 𝑤0, 𝛽1, 𝛽2 — forgetting factors, 0 < 𝛽1 < 1,
0 < 𝛽2 < 1, 𝜀 — smoothing term
𝑔𝑗(𝜏) — exponentially averaged partial derivative w.r.t. 𝑤𝑗 , up to
iteration 𝜏 , 𝑔𝑗(−1) = 0, 𝑗 = 1, ...,𝑚 (1-st moment)
𝐺𝑗(𝜏) — exponentially averaged squared partial derivative w.r.t.
𝑤𝑗 , up to iteration 𝜏 , 𝐺𝑗(−1) = 0, 𝑗 = 1, ...,𝑚 (2-st moment)
𝑔(𝜏), 𝐺̂(𝜏) — corrected 1-st and 2-nd moments of gradient at
iteration 𝜏

Notes:
Uses a different learning rate for each parameter 𝑤𝑗

Effective for functions with very noisy and/or sparse gradients
Relatively easy to configure where the default configuration
parameters do well on most problems
(𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8)
Adam looks like RMSProp + Momentum
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RProp (Resilient Propagation)

Idea:
Uses per-parameter learning rate adaptation based on the sign of
partial derivatives

Equations (Riedmiller, Braun, 1993):

𝑤𝑗(𝜏 + 1) = 𝑤𝑗(𝜏)− sgn
(︂
𝜕𝐸(𝑤(𝜏))

𝜕𝑤𝑗

)︂
Δ𝑗(𝜏)

Δ𝑗(𝜏) =

⎧⎪⎪⎨⎪⎪⎩
min{𝜂+Δ𝑗(𝜏 − 1),Δmax}, 𝜕𝐸(𝑤(𝜏−1))

𝜕𝑤𝑗

𝜕𝐸(𝑤(𝜏))
𝜕𝑤𝑗

> 0

max{𝜂−Δ𝑗(𝜏 − 1),Δmin}, 𝜕𝐸(𝑤(𝜏−1))
𝜕𝑤𝑗

𝜕𝐸(𝑤(𝜏))
𝜕𝑤𝑗

< 0

Δ𝑗(𝜏 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 0 < 𝜂− < 1 < 𝜂+ — decay and acceleration parameters,
Δmin, Δmax — minimal and maximal weight-steps
Initial point 𝑤(0) = 𝑤0, Δ(0) = Δ0 — initial weight-step
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RProp (Resilient Propagation)

Notes:
Uses a different learning rate for each parameter 𝑤𝑗 that
depends only on sign of the gradient and not of its amount
Very suitable for problems where the gradient is numerically
estimated or the objective is noisy
Increases the learning rate for a weight multiplicatively if signs
of last two partial derivatives agree and decreases it
multiplicatively if don’t agree
Modifications: PRProp+, PRProp–, iPRProp+, iPRProp–
Easy to implement and not susceptible to numerical problems
The RProp algorithms are known to be very robust with
respect to their internal parameters (the recommended decay
and acceleration parameters are 𝜂− = 0.5, 𝜂+ = 1.2)
The algorithm is applicable only for batch training and
inefficient for stochastic and mini-batch training
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Comparison of GD Algorithms. Illustration 1

Comparison of Adam to other optimization algorithms training a
multilayer perceptron on MNIST images*

*Kingma D.P., Ba, J.L. (2015). Adam: a Method for Stochastic Optimization. International Conference
on Learning Representations, 1–13
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Comparison of GD Algorithms. Illustration 2

Behaviour on the contours of
the Beale function

Behaviour at a saddle point

http://cs231n.github.io/neural-networks-3/: Fig. 1, Fig. 2
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Stochastic Gradient Descent (SGD)

𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample for
training

Objective:

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐸(𝑖)(𝑤) → min
𝑤

where 𝐸(𝑖)(𝑤) is a loss on example (𝑥(𝑖), 𝜎(𝑖)), 𝑖 = 1, ..., 𝑛

Idea:
Instead of optimize error 𝐸(𝑤) on whole sample 𝒟 let’s optimize it
on each example (𝑥(𝑖), 𝜎(𝑖)) consequently, 𝑖 = 1, ..., 𝑛

For vanilla gradient descent:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸(𝑖)(𝑤(𝜏))

Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate
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SGD Algorithm

SGD algorithm:
Step 1. Choose initial vector of parameters 𝑤0

Step 2. Randomly shuffle examples in the training set 𝒟

Step 3. For each example from 𝒟 update the vector of parameters
Step 4. Repeat steps 2 and 3 until the stopping criterion is met

Definition
Epoch is one forward pass and one backward pass of all training
examples

For batch gradient descent: one epoch consists of 1 iteration,
performs model updates after each training epoch
For stochastic gradient descent: one epoch consists of 𝑛 iterations,
performs model updates after each training example
SGD is also called on-line gradient descent
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Stochastic GD. Advantages and Disadvantages

Advantages:
The frequent updates immediately give an insight into the
performance of the model and the rate of improvement
The frequent updates can result in faster learning on some
problems
Computation time per update does not depend on training
sample size
Can allow the model to avoid local minima due to the noisy
update process

Disadvantages:
Updating the model so frequently is more computationally
expensive
Can result in a noisy gradient signal
The noisy learning process can make it hard for the algorithm
to settle on an error minimum for the model
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Batch GD. Advantages and Disadvantages

Advantages:
More computationally efficient than stochastic gradient
descent due to fewer updates of the model
More stable gradient and may result in a more stable
convergence on some problems
Additive gradient can be calculated on parallel processing
based implementations

Disadvantages:
Can converge to a local minima
Additional complexity of accumulating gradients across all
training examples
Commonly, batch gradient descent is implemented in such a
way that it requires the entire training dataset in memory
Model updates, and in turn training speed, may become very
slow for large datasets
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SGD. Illustration
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Mini-Batch Gradient Descent

Idea:
The training dataset 𝒟 is partitioned into mini-batches 𝒟1, ...,𝒟𝑃

that are used to calculate model error and update model coefficients

For vanilla gradient descent:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼∇𝐸𝑝(𝑤(𝜏))

where 𝐸𝑝(𝑤(𝜏)) is a error on 𝑝-th mini-batch:

𝐸𝑝(𝑤(𝜏)) =
1

|𝒟𝑝|
∑︁
𝑖∈𝒟𝑝

𝐸(𝑖)(𝑤(𝜏))

where |𝒟𝑝| is a size of 𝑝-th mini-batch, 𝑝 = 1, ..., 𝑃 ,
𝑃 is a number of mini-batches
Initial point 𝑤(0) = 𝑤0, 𝛼 > 0 — learning rate
For mini-batch gradient descent: one epoch consists of 𝑃 iterations,
performs model updates after each mini-batch
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Mini-Batch GD. Advantages and Disadvantages

Mini-batch gradient descent is a trade-off between stochastic
gradient descent and batch gradient descent:
𝑃 = 1 ⇒ Stochastic gradient descent
𝑃 = 𝑛 ⇒ Batch gradient descent
1 < 𝑃 < 𝑛 ⇒ Mini-batch gradient descent
Advantages:

More robust convergence than batch gradient descent,
avoiding local minima
The batched updates provide a computationally more efficient
process than stochastic gradient descent
Less noise and more accurate estimates of gradient than in
stochastic gradient descent

Disadvantages:
Additional mini-batch size hyperparameter for the learning
algorithm
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Mini-Batch Size

Mini-batch size is a hyperparameter for the learning algorithm
In theory, mini-batch size should impact training time and not so
much model performance

Tips to choose mini-batch size*:
Mini-batch size is typically chosen between 1 and few
hundreds. A good default for batch size might be 32
It is a good idea to review training curves of model validation
error against training time with different batch sizes when
tuning the batch size
Mini-batch size can be optimized separately of the other
hyperparameters
Tune batch size and learning rate after tuning all other
hyperparameters

*Bengio Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, 437-478
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Mini-Batch GD. Illustration
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Gradient Descent Algorithms for Mini-Batch Training

Stochastic and mini-batch mode can be used with following
gradient descent algorithms:

GD with momentum
Nesterov accelerated gradient
AdaGrad
RMSProp
AdaDelta
Adam
Adamax (Adam with 𝐿∞ norm)
Nadam (Adam but Nesterov accelerated gradient is used
instead of momentum)

Batch objective function 𝐸(𝑤) in iteration scheme should be
replaced to objective on example 𝐸(𝑖)(𝑤) or on mini-batch 𝐸𝑝(𝑤)
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Newton’s Method

Idea:
Second order method based on local quadratic approximations of
objective 𝐸(𝑤)

The second order Taylor expansion of objective 𝐸(𝑤) around 𝑤 is
used as quadratic approximation:

𝐸(𝑤 + 𝜀) ≈ 𝐸(𝑤) +∇𝐸(𝑤)𝑇 𝜀+
1

2
𝜀𝑇𝐻(𝑤)𝜀

where 𝐻(𝑤) is the Hessian matrix of objective 𝐸(𝑤):

𝐻(𝑤) =

⎛⎜⎝
𝜕2𝐸(𝑤)
𝜕𝑤2

1
... 𝜕2𝐸(𝑤)

𝜕𝑤1𝜕𝑤𝑚

... ... ...
𝜕2𝐸(𝑤)
𝜕𝑤𝑚𝜕𝑤1

... 𝜕2𝐸(𝑤)
𝜕𝑤2

𝑚

⎞⎟⎠
is the square matrix of second-order partial derivatives of 𝐸(𝑤)

The Hessian describes the local curvature of the objective
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Newton’s Method

Quadratic approximation:

𝐸(𝑤 + 𝜀) ≈ 𝐸(𝑤) +∇𝐸(𝑤)𝑇 𝜀+
1

2
𝜀𝑇𝐻(𝑤)𝜀

We want to find 𝜀 such that 𝐸(𝑤 + 𝜀) is a minimum:

𝜕𝐸(𝑤 + 𝜀)

𝜕𝜀
= 0

∇𝐸(𝑤) +𝐻(𝑤)𝜀 = 0

𝐻(𝑤)𝜀 = −∇𝐸(𝑤)

𝜀 = −𝐻(𝑤)−1∇𝐸(𝑤)

Equations:

𝑤(𝜏 + 1) = 𝑤(𝜏) + 𝜀 = 𝑤(𝜏)−𝐻(𝑤(𝜏))−1∇𝐸(𝑤(𝜏))

Initial point 𝑤(0) = 𝑤0
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Newton’s Method. Illustration

The Newton’s method is also called Newton-Raphson method
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Newton’s Method

Notes:

Multiplying by the inverse Hessian leads the optimization to
take more aggressive steps in directions of shallow curvature
and shorter steps in directions of steep curvature
It is not guaranteed that Newton’s method will converge if an
initial point 𝑤(0) is too far from the minimum
Equal to 1-st order method the Newton’s method converges to
a local minimum
The Newton’s method is impractical for most learning
problems because computing (and inverting) the Hessian in its
explicit form is a very costly process in both space and time
For instance, a neural network with one million parameters would
have a Hessian matrix of size [1,000,000 x 1,000,000], occupying
approximately 3725 gigabytes of RAM

Alexander Trofimov Neural Networks Training 48 / 67



Gradient Descent Methods
2-nd Order Methods
Weight Initialization

Newton’s Method
Quasi-Newton’s Methods

Levenberg-Marquardt Method

Idea:
Uses 1-st order approximation of Hessian 𝐻(𝑤) for objective 𝐸(𝑤)
with quadratic loss function

Quasi-Newton’s methods use the idea of Newton’s method and an
approximation of Hessian (or inverse Hessian)

Levenberg-Marquardt method is a quasi-Newton’s method

Objective:

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐸(𝑖)(𝑤) =
1

2𝑛

𝑛∑︁
𝑖=1

𝑒(𝑖)(𝑤)𝑇 𝑒(𝑖)(𝑤)

where 𝐸(𝑖)(𝑤) = 1
2𝑒

(𝑖)(𝑤)𝑇 𝑒(𝑖)(𝑤) = 1
2

⃒⃒⃒⃒
𝑦(𝑖) − 𝜎(𝑖)

⃒⃒⃒⃒2
— loss on

𝑖-th example,
𝑒(𝑖)(𝑤) = 𝑦(𝑖)(𝑤)− 𝜎(𝑖) — error on 𝑖-th example, 𝑖 = 1, ..., 𝑛
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Hessian Matrix for Quadratic Loss

Hessian matrix:

𝐻(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐻(𝑖)(𝑤)

where 𝐻(𝑖)(𝑤) — Hessian of loss 𝐸(𝑖)(𝑤), 𝑖 = 1, ..., 𝑛:

𝐻(𝑖)(𝑤) =
𝜕2𝐸(𝑖)(𝑤)

𝜕𝑤𝑇𝜕𝑤
=

𝜕

𝜕𝑤𝑇
∇𝐸(𝑖)(𝑤) =

𝜕

𝜕𝑤𝑇

(︁
𝐽 (𝑖)(𝑤)𝑇 𝑒(𝑖)(𝑤)

)︁
=

𝜕𝐽 (𝑖)(𝑤)𝑇

𝜕𝑤𝑇
𝑒(𝑖)(𝑤) + 𝐽 (𝑖)(𝑤)𝑇

𝜕𝑒(𝑖)(𝑤)

𝜕𝑤𝑇

= 𝑅(𝑖)(𝑤) + 𝐽 (𝑖)(𝑤)𝑇𝐽 (𝑖)(𝑤)

where 𝐽 (𝑖)(𝑤) is the Jacobian matrix of error 𝑒(𝑖)(𝑤) on 𝑖-th

example, 𝑒(𝑖)(𝑤) =
(︁
𝑒
(𝑖)
1 (𝑤), ..., 𝑒

(𝑖)
𝐾 (𝑤)

)︁𝑇
, 𝑖 = 1, ..., 𝑛

𝑅(𝑖)(𝑤) is the matrix that contains second derivatives of 𝑒(𝑖)(𝑤)
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Jacobian Matrix of Errors

The following expressions were used:

∇
(︀
𝑒(𝑤)𝑇 𝑒(𝑤)

)︀
= 2𝐽𝑒(𝑤)

𝑇 𝑒(𝑤)

𝜕𝑒(𝑤)

𝜕𝑤𝑇
= 𝐽𝑒(𝑤)

The Jacobian matrix of error 𝑒(𝑖)(𝑤) =
(︁
𝑒
(𝑖)
1 (𝑤), ..., 𝑒

(𝑖)
𝐾 (𝑤)

)︁𝑇
:

𝐽 (𝑖)(𝑤) =

⎛⎜⎜⎝
𝜕𝑒

(𝑖)
1

𝜕𝑤1
...

𝜕𝑒
(𝑖)
1

𝜕𝑤𝑚

... ... ...
𝜕𝑒

(𝑖)
𝐾

𝜕𝑤1
...

𝜕𝑒
(𝑖)
𝐾

𝜕𝑤𝑚

⎞⎟⎟⎠
is the matrix of first-order partial derivatives of vector-valued
function 𝑒(𝑖)(𝑤), 𝑖 = 1, ..., 𝑛
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Diagonal Approximation of Hessian Matrix

Hessian matrix:

𝐻(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐻(𝑖)(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(︁
𝑅(𝑖)(𝑤) + 𝐽 (𝑖)(𝑤)𝑇𝐽 (𝑖)(𝑤)

)︁
Levenberg-Marquardt method uses scalar matrix 𝜇𝐼𝑚 as an
approximation of matrix 𝑅(𝑖)(𝑤):

𝐻(𝑤) ≈ 𝐻̃(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(︁
𝜇𝐼𝑚 + 𝐽 (𝑖)(𝑤)𝑇𝐽 (𝑖)(𝑤)

)︁
= 𝜇𝐼𝑚 +

1

𝑛

𝑛∑︁
𝑖=1

𝐽 (𝑖)(𝑤)𝑇𝐽 (𝑖)(𝑤)

Gradient:

∇𝐸(𝑤(𝜏)) =
1

𝑛

𝑛∑︁
𝑖=1

∇𝐸(𝑖)(𝑤(𝜏)) =
1

𝑛

𝑛∑︁
𝑖=1

𝐽 (𝑖)(𝑤)𝑇 𝑒(𝑖)(𝑤)
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Levenberg-Marquardt Method

Equations (1963):

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝐻̃−1(𝑤(𝜏)) · ∇𝐸(𝑤(𝜏))

𝑤(𝜏 + 1) = 𝑤(𝜏)−

(︃
𝜇𝐼𝑚 +

1

𝑛

𝑛∑︁
𝑖=1

𝐽 (𝑖)(𝑤(𝜏))𝑇𝐽 (𝑖)(𝑤(𝜏))

)︃−1

×

×

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝐽 (𝑖)(𝑤(𝜏))𝑇 𝑒(𝑖)(𝑤(𝜏))

)︃
Initial point 𝑤(0) = 𝑤0

𝜇 > 0 — damping parameter
𝜇 ≈ 0 ⇒ Newton’s method using approximate Hessian matrix
𝜇 ≫ 0 ⇒ Vanilla gradient descent with learning rate 𝛼 = 1

𝜇
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Levenberg-Marquardt Method

Notes:

It is recommended to choose the damping parameter 𝜇 larger
in the beginning of optimization process and smaller near the
optimal point
Adaptive damping parameter 𝜇 rule: decrease it after each
successful step (reduction in performance function) and
increase it only when a tentative step would increase the
performance function
Fast convergence in ravine areas
Impractical for learning problems with large number of
parameters because inverting the approximate Hessian matrix
is a very costly process
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Levenberg-Marquardt Method. Illustration

Steepest GD:

Levenberg-
Marquardt:
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BFGS (Broyden–Fletcher–Goldfarb–Shanno)

Idea:
Uses iterative approximation of inverse Hessian 𝐻(𝑤)

Equations:

𝑤(𝜏 + 1) = 𝑤(𝜏)− 𝛼(𝜏)𝐵(𝜏)∇𝐸(𝑤(𝜏))

where 𝐵(𝜏) ≈ 𝐻(𝑤(𝜏))−1 is an approximation of inverse Hessian
matrix

BFGS (1983):

𝐵(𝜏) =

(︂
𝐼𝑚 − 𝑠(𝜏)𝑦(𝜏)𝑇

𝑦(𝜏)𝑇 𝑠(𝜏)

)︂
𝐵(𝜏−1)

(︂
𝐼𝑚 − 𝑦(𝜏)𝑠(𝜏)𝑇

𝑦(𝜏)𝑇 𝑠(𝜏)

)︂
+
𝑠(𝜏)𝑠(𝜏)𝑇

𝑦(𝜏)𝑇 𝑠(𝜏)

where 𝑠(𝜏) = 𝑤(𝜏)−𝑤(𝜏 − 1), 𝑦(𝜏) = ∇𝐸(𝑤(𝜏))−∇𝐸(𝑤(𝜏 − 1))

Initial point 𝑤(0) = 𝑤0

Initial approximation 𝐵(0) = 𝐵0
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BFGS

BFGS uses −𝐵(𝜏)∇𝐸(𝑤(𝜏)) only as a direction of search. The
step size 𝛼(𝜏) is determined as a solution of line-search problem:

𝛼(𝜏) = argmin
𝛼>0

𝐸(𝑤(𝜏)− 𝛼𝐵(𝜏)∇𝐸(𝑤(𝜏)))

Notes:

Practically, 𝐵(0) can be initialized with identity matrix 𝐼𝑚, so
that the first step will be equivalent to a gradient descent
Requires solution of line search problem at each iteration
The method is inefficient in high dimension parameters space
Fast convergence in ravine areas
Stores approximated inverse Hessian matrix 𝐵(𝜏) at each
iteration
L-BFGS modification (Limited memory BFGS): requires only
retaining the most recent gradients
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Overview

1-st order gradient descent methods

Vanilla gradient descent
Gradient descent methods with line search
— Steepest gradient descent
— Conjugate gradient descent
Adaptive learning rate methods
— GD with momentum, Nesterov accelerated gradient
Per-parameter adaptive learning rate methods
— AdaGrad, AdaDelta, RMSProp, Adam, ...
— RProp

2-nd order methods

Newton’s method
Quasi-Newton’s methods
— Levenberg-Marquardt method
— BFGS
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Which Gradient Descent Method to Use?

Training modes:

Batch gradient descent
Stochastic gradient descent
Mini-batch gradient descent

For large neural networks the gradient descent method must be
effective in stochastic or mini-batch modes, computationally simple
and scalable

You shouldn’t care too much about find the minimum of your
training performance function, because it’s only an approximation
to what you really care about, an acceptable performance of model

For most training problems per-parameter adaptive learning rate
methods are widely used
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Network Weights Initialization

The training of neural network with any gradient descent method
starts from initial point 𝑤(0) = 𝑤0

How to choose 𝑤0?
The common approach is to generate random initial weights from
some distribution with zero mean

Usual distributions:
Normal 𝑁(0, 𝜎)

Truncated normal 𝑁*(0, 𝜎)
The support of distribution is (−2𝜎, 2𝜎). If the random number is
out of this range, the value is discarded and re-drawn
Uniform 𝑅(−𝑎, 𝑎)

The variance 𝜎2 = D[𝑅(−𝑎, 𝑎)] = 𝑎2

3

The weight initialization have a profound impact on both the
convergence rate and final quality of a network
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Network Weights Initialization. Illustration

Learning curves of a neural net initialized by three different ways

Training on MNIST images
dataset:

http://yann.lecun.com/
exdb/mnist/
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Information Flow in Neural Network

Activations of hidden layers for different initial weights distributions

Top: the activations quickly vanish to almost nothing
Middle: good information flow throughout the network
Bottom: the activations become increasingly spread out
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Good Information Flowing

The idea of weights initialization is to keep information flowing in
the neural network

Good information flowing means:

to maintain variance of activations throughout the network:

D[𝑦1] ≈ D[𝑦2] ≈ ... ≈ D[𝑦𝐿]

to maintain variance of gradients (“dual” activations)
throughout the network:

D

[︂
𝜕𝐿

𝜕ℎ1

]︂
≈ D

[︂
𝜕𝐿

𝜕ℎ2

]︂
≈ ... ≈ D

[︂
𝜕𝐿

𝜕ℎ𝐿

]︂
where 𝐿 is the loss function
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Variances of Neurons’ Activations

Mathematical model of multilayer neural network:{︃
ℎ𝑙 = 𝑊 𝑙𝑦𝑙−1 − 𝑏𝑙

𝑦𝑙 = 𝑓𝑙(ℎ
𝑙)

𝑙 = 1, ..., 𝐿

Consider linear activation functions 𝑓𝑙(ℎ) = ℎ, 𝑏𝑙 = 0, 𝑙 = 1, ..., 𝐿

Variances of activations:

D[𝑦𝑙𝑖] = D[ℎ𝑙𝑖] = D

⎡⎣𝑁𝑙−1∑︁
𝑗=1

𝑤𝑙
𝑖𝑗𝑦

𝑙−1
𝑗 − 𝑏𝑙𝑖

⎤⎦ =

𝑁𝑙−1∑︁
𝑗=1

D[𝑤𝑙
𝑖𝑗𝑦

𝑙−1
𝑗 ]

=

𝑁𝑙−1∑︁
𝑗=1

D[𝑤𝑙
𝑖𝑗 ]D[𝑦𝑙−1

𝑗 ] = 𝜎2
𝑙

𝑁𝑙−1∑︁
𝑗=1

D[𝑦𝑙−1
𝑗 ] = 𝑁𝑙−1𝜎

2
𝑙 D[𝑦𝑙−1]

The expression D[𝑋𝑌 ] = D[𝑋]D[𝑌 ] +𝑚2
𝑋D[𝑌 ] +𝑚2

𝑌 D[𝑋]
(𝑋 and 𝑌 are independent random variables) were used (prove it!)
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Variances of Gradients

Backpropagation equations:

Δ𝐿
𝑖 =

𝜕𝐿𝑜𝑠𝑠

𝜕ℎ𝐿𝑖
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑦𝑖
𝑓 ′
𝐿(ℎ

𝐿
𝑖 ), 𝑖 = 1,𝐾

Δ𝑙
𝑖 =

𝜕𝐿𝑜𝑠𝑠

𝜕ℎ𝑙𝑖
=

⎛⎝𝑁𝑙+1∑︁
𝑗=1

Δ𝑙+1
𝑗 𝑤𝑙+1

𝑗𝑖

⎞⎠ 𝑓 ′
𝑙 (ℎ

𝑙
𝑖), 𝑙 = 1, 𝐿− 1, 𝑖 = 1, 𝑁𝑙

Variances of gradients:

D[Δ𝑙−1
𝑖 ] = D

⎡⎣ 𝑁𝑙∑︁
𝑗=1

Δ𝑙
𝑗𝑤

𝑙
𝑗𝑖

⎤⎦ =

𝑁𝑙∑︁
𝑗=1

D[Δ𝑙
𝑗𝑤

𝑙
𝑗𝑖]

=

𝑁𝑙∑︁
𝑗=1

D[Δ𝑙
𝑗 ]D[𝑤𝑙

𝑗𝑖] = 𝜎2
𝑙

𝑁𝑙∑︁
𝑗=1

D[Δ𝑙
𝑗 ] = 𝑁𝑙𝜎

2
𝑙 D[Δ𝑙]
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Variances of Weights

Conditions of good information flowing:

D[𝑦𝑙𝑖] = 𝑁𝑙−1𝜎
2
𝑙 D[𝑦𝑙−1], D[𝑦𝑙𝑖] = D[𝑦𝑙−1

𝑖 ] ⇒ 𝜎2
𝑙 =

1

𝑁𝑙−1

D[Δ𝑙−1
𝑖 ] = 𝑁𝑙𝜎

2
𝑙 D[Δ𝑙], D[Δ𝑙−1

𝑖 ] = D[Δ𝑙
𝑖] ⇒ 𝜎2

𝑙 =
1

𝑁𝑙

A compromise between these two conditions is the harmonic mean:

𝜎2
𝑙 =

2

𝑁𝑙−1 +𝑁𝑙
, 𝑙 = 1, ..., 𝐿

𝑁𝑙−1 is the number of ingoing connections of neurons in 𝑙-th layer
𝑁𝑙 is the number of outgoing connections of 𝑙-th layer

The variance of initial layer’s weights should be chosen as the
harmonic mean between numbers of ingoing and outgoing
connections of the layer
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Xavier/Glorot Weight Initialization Method

The idea is to estimate variances of layers’ activations in forward
pass and variances of gradients in backward pass and to apply
condition of good information flowing (X. Glorot, 2010)

Linear, tanh or softsign activation functions

𝑁*

(︃
0,

√︃
2

𝑁𝑙−1 +𝑁𝑙

)︃
or 𝑅

(︃
−

√︃
6

𝑁𝑙−1 +𝑁𝑙
,

√︃
6

𝑁𝑙−1 +𝑁𝑙

)︃
Rectified linear activation functions

𝑁*

(︃
0,

√︃
4

𝑁𝑙−1 +𝑁𝑙

)︃
or 𝑅

(︃
−

√︃
12

𝑁𝑙−1 +𝑁𝑙
,

√︃
12

𝑁𝑙−1 +𝑁𝑙

)︃
Logistic activation function

𝑁*

(︃
0, 4

√︃
2

𝑁𝑙−1 +𝑁𝑙

)︃
or𝑅

(︃
−4

√︃
6

𝑁𝑙−1 +𝑁𝑙
, 4

√︃
6

𝑁𝑙−1 +𝑁𝑙

)︃
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