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Artificial Neuron Model

Inputs: 𝑥1, ..., 𝑥𝑛
Parameters: weights (synaptic coefficients) 𝑤1, ..., 𝑤𝑛 and bias 𝑏
Activation function: 𝑓 (transfer function)

Activation: ℎ =
𝑛∑︀

𝑗=1
𝑤𝑗𝑥𝑗 − 𝑏

Output: 𝑦 = 𝑓(ℎ)
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Types of Activation Functions

Linear function
𝑓(ℎ) = ℎ,

𝑑𝑓

𝑑ℎ
= 1

Neuron’s output is a linear combination of its inputs:

𝑦 = 𝑤1𝑥1 + ... + 𝑤𝑛𝑥𝑛 − 𝑏
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Step function

𝑓(ℎ) =

{︃
1, ℎ > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The derivative is 0 for all ℎ ̸= 0
Neuron’s output is binary: all possible values are 0 or 1
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Sign function

𝑓(ℎ) =

{︃
1, ℎ > 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The derivative is 0 for all ℎ ̸= 0
Neuron’s output is bipolar: all possible values are –1 or 1
Both step function and sign function are threshold functions
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Softsign function

𝑓(ℎ) =
ℎ

1 + |ℎ|
,

𝑑𝑓

𝑑ℎ
=

1

(1 + |ℎ|)2

Softsign is a smooth approximation of hard sign function
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Types of Activation Functions

Logistic function

𝑓(ℎ) =
1

1 + 𝑒−ℎ
,

𝑑𝑓

𝑑ℎ
= 𝑓(ℎ)(1 − 𝑓(ℎ))

Neuron’s output is in range from 0 to 1
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Types of Activation Functions

Tanh function

𝑓(ℎ) =
𝑒ℎ − 𝑒−ℎ

𝑒ℎ + 𝑒−ℎ
,

𝑑𝑓

𝑑ℎ
= 1 − 𝑓2(ℎ)

Tanh is a hyperbolic tangent function — shifted and scaled
version of logistic function
Softsign, logistic and tanh function are sigmoid functions
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Types of Activation Functions

Rectified linear function

𝑓(ℎ) =

{︃
ℎ, ℎ > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑑𝑓

𝑑ℎ
=

{︃
1, ℎ > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The derivative is a step function
Neuron’s output is non-negative
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Types of Activation Functions

Softplus function

𝑓(ℎ) = ln(1 + 𝑒ℎ),
𝑑𝑓

𝑑ℎ
=

1

1 + 𝑒−ℎ

Softplus is a smooth approximation of rectified linear function
The derivative is a logistic function
Neuron’s output is non-negative
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Types of Activation Functions

Gaussian function

𝑓(ℎ) = 𝑒−ℎ2
,

𝑑𝑓

𝑑ℎ
= −2ℎ𝑒−ℎ2

Gaussian is a symmetric function with maximum at zero
activation
Neuron’s output is non-negative
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Multilayer Perceptron

In neural networks the outputs of some neurons are transferred to
the inputs of other neurons

Networks without cycles (feedback loops) are called Feed-forward
neural networks (FFNN)

The input signal in FFNN propagates in one direction — from input
neurons to output neurons

Multilayer perceptron (MLP) is a special case of FFNN architecture

The input signal in MLP propagates from input neurons to output
neurons in layer-by-layer mode
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Multilayer Perceptron. Illustration

The architecture consists of: input layer, hidden layers, output layer
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Mathematical Model

Definitions:
𝑀 is a number of network’s inputs
𝐿 is a number of layers
𝐾 is a number of network’s outputs
𝑁𝑙 is a number of neurons in 𝑙-th layer, 𝑙 = 0, ..., 𝐿

ℎ𝑙 = (ℎ𝑙1, ..., ℎ
𝑙
𝑁𝑙

)𝑇 is the 𝑙-th layer’s activation, 𝑙 = 1, ..., 𝐿

𝑦𝑙 = (𝑦𝑙1, ..., 𝑦
𝑙
𝑁𝑙

)𝑇 is the 𝑙-th layer’s output, 𝑙 = 0, ..., 𝐿

𝑓𝑙 is an activation function of neurons in 𝑙-th layer, 𝑙 = 1, ..., 𝐿
Usually all neurons within layer have the same activation function

Inputs and outputs:
# network’s inputs is equal to the input layer size: 𝑀 ≡ 𝑁0

# network’s outputs is equal to the output layer size: 𝐾 ≡ 𝑁𝐿

𝑥 = 𝑦0 = (𝑥1, ..., 𝑥𝑀 )𝑇 is network’s input
𝑦 = 𝑦𝐿 = (𝑦1, ..., 𝑦𝐾)𝑇 is network’s output
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Mathematical Model

Network’s parameters:
Synaptic matrix of 𝑙-th layer, 𝑙 = 1, ..., 𝐿:

𝑊 𝑙 =

⎛⎝ 𝑤𝑙
11 ... 𝑤𝑙

1,𝑁𝑙−1

... ... ...
𝑤𝑙
𝑁𝑙,1

... 𝑤𝑙
𝑁𝑙,𝑁𝑙−1

⎞⎠
Vector of biases of 𝑙-th layer, 𝑙 = 1, ..., 𝐿:

𝑏𝑙 = (𝑏𝑙1, ..., 𝑏
𝑙
𝑁𝑙

)𝑇

Mathematical model:{︃
ℎ𝑙 = 𝑊 𝑙𝑦𝑙−1 − 𝑏𝑙

𝑦𝑙 = 𝑓𝑙(ℎ
𝑙)

𝑙 = 1, ..., 𝐿
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MLP as a Mapping

The MLP can be viewed as a mapping from input domain 𝒳 to
output domain 𝒴 :

𝐹 : 𝒳 → 𝒴

𝐹
𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

This mapping is characterized by MLP’s parameters: synaptic
coefficients and biases of MLP’s neurons

Let’s vectorize all parameters and denote them as 𝑤:

𝑤 = 𝑣𝑒𝑐
(︀
𝑊 1, ...,𝑊𝐿, 𝑏1, ..., 𝑏𝐿

)︀
The network’s output:

𝑦 = 𝐹 (𝑥;𝑤)
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Example. Two-Layered Network

1

2

3

4

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑥 𝑦

Plots 𝑦(𝑥) at different parameters 𝑤:
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Universal Approximation Theorem (UAT)

Theorem (Cybenko, 1989)

Let 𝜙(·) be a nonconstant, bounded, and monotonically increasing
continuous function. Then, given any function 𝑓(𝑥1, ..., 𝑥𝑀 ),
continuous on the 𝑀 -dimensional unit hypercube [0, 1]𝑀 , there
exist an integer 𝑁 and sets of real constants 𝛼𝑖, 𝑏𝑖 and 𝑤𝑖𝑗 ,
𝑖 = 1, ..., 𝑁 , 𝑗 = 1, ...,𝑀 , such that we may define

𝐹 (𝑥1, ..., 𝑥𝑀 ) =

𝑁∑︁
𝑖=1

𝛼𝑖𝜙

⎛⎝ 𝑀∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖

⎞⎠
as approximate realization of the function 𝑓(𝑥1, ..., 𝑥𝑀 ):

|𝐹 (𝑥1, ..., 𝑥𝑀 ) − 𝑓(𝑥1, ..., 𝑥𝑀 )| < 𝜀

for all 𝜀 > 0 and for all 𝑥1, ..., 𝑥𝑀 from unit hypercube [0, 1]𝑀
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Neural Interpretation of UAT

The universal approximation theorem is directly applicable to
multilayer perceptrons

Suppose:
𝑥1, ..., 𝑥𝑀 — the MLP’s inputs
𝑁 — the number of neurons in MLP’s hidden layer
𝑤𝑖𝑗 — the weights of hidden layer, 𝑖 = 1, ..., 𝑁 , 𝑗 = 1, ...,𝑀
𝑏𝑖 — the biases of hidden layer, 𝑖 = 1, ..., 𝑁
𝛼𝑖 — the weights of output neuron, 𝑖 = 1, ..., 𝑁
𝜙(·) — activation function of hidden layer (e.g. sigmiod)
Activation function of output neuron is linear

Then:
𝐹 (𝑥1, ..., 𝑥𝑀 ) represents the output of a multilayer perceptron with
one hidden layer
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Neural Interpretation of UAT. Illustration

Alexander Trofimov Multilayer Neural Networks 20 / 44



Network Architecture
Training Problem

Activation Functions
Mathematical Model

UAT and MLP

The universal approximation theorem states that a single hidden
layer is sufficient for a multilayer perceptron to compute an
approximation to a function represented by a set of observations:(︁

𝑥
(1)
1 , ..., 𝑥

(1)
𝑀 ;𝜎(1)

)︁
𝜎(1) = 𝑓(𝑥(1)), 𝑥(1) = (𝑥

(1)
1 , ..., 𝑥

(1)
𝑀 )

...(︁
𝑥
(𝑛)
1 , ..., 𝑥

(𝑛)
𝑀 ;𝜎(𝑛)

)︁
𝜎(𝑛) = 𝑓(𝑥(𝑛)), 𝑥(𝑛) = (𝑥

(𝑛)
1 , ..., 𝑥

(𝑛)
𝑀 )

But the theorem does not say that a single hidden layer is an
optimal approximation (in the sense of searching the unknown
parameters, ease of implementation, etc.)

The UAT is an existence theorem and almost useless in practise
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How to Build MLP?

𝑓
(unknown)

𝐹
(MLP)

𝑥 ∈ 𝒳 𝜎 ∈ 𝒴

𝐹 (𝑥)

𝐿(𝐹, (𝑥, 𝜎))

How to choose number of hidden layers, number of neurons,
activation functions and the parameters of neurons (synaptic
coefficients and biases)?

Neural models are build in a data-driven manner

If we want to build a model we need a some accuracy measure.
Accuracy measure must represent the concordance between the
model and the object (or process) under modelling
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Loss Function

𝑓
(unknown)

𝐹
(MLP)

𝑥 ∈ 𝒳 𝜎 ∈ 𝒴

𝐹 (𝑥)

𝐿(𝐹, (𝑥, 𝜎))

Definition
Loss function (cost function) 𝐿(𝐹, (𝑥, 𝜎)) ∈ R+ is some measure of
predictive inaccuracy of model 𝐹 at (𝑥, 𝜎) ∈ 𝒳 × 𝒴

When comparing the same type of loss among many models, lower
loss indicates a better model
The best value: 𝐿(𝐹, (𝑥, 𝜎)) = 0 (means no error on 𝑥 ∈ 𝒳 )
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MLP Training Problem

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

𝑥(𝑖) =
(︁
𝑥
(𝑖)
1 , ..., 𝑥

(𝑖)
𝑀

)︁𝑇
— 𝑖-th input vector, 𝑖 = 1, ..., 𝑛

𝜎(𝑖) =
(︁
𝜎
(𝑖)
1 , ..., 𝜎

(𝑖)
𝐾

)︁𝑇
— 𝑖-th target vector, 𝑖 = 1, ..., 𝑛

Problem:
The training of MLP is the minimization of mean loss over data
sample 𝒟 :

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿
(︁
𝐹, (𝑥(𝑖), 𝜎(𝑖))

)︁
→ min

𝑤

The training of MLP is a kind of optimization problem with
objective function 𝐸(𝑤). To resolve it optimization techniques are
used
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Types of Problems

Classification
𝑓(𝑥) is discrete
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))}
𝑥(𝑖) ∈ 𝒳 is 𝑖-th sample, 𝑖 = 1, 𝑛
𝜎(𝑖) ∈ 𝒴 is label of 𝑥(𝑖)

𝒴 = {1, ...,𝐾} is a set of class
labels

Regression
𝑓(𝑥) is continuous
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))}
𝑥(𝑖) ∈ 𝒳 is 𝑖-th sample, 𝑖 = 1, 𝑛
𝜎(𝑖) ∈ 𝒴 is response for 𝑥(𝑖)

𝒴 = R𝐾 is a set of responses
Different tasks impose different loss functions
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Types of Loss Functions

Quadratic loss

𝐿(𝐹, (𝑥, 𝜎)) = ||𝐹 (𝑥) − 𝜎||2

Commonly used for regression tasks (𝜎 is continuous)
Binary cross-entropy loss

𝐿(𝐹, (𝑥, 𝜎)) = − (𝜎 ln𝐹 (𝑥) + (1 − 𝜎) ln(1 − 𝐹 (𝑥)))

Commonly used for binary classification tasks (𝜎 ∈ {0, 1})
Multinomial (categorical) cross-entropy loss

𝐿(𝐹, (𝑥, 𝜎)) = −
𝐾∑︁
𝑘=1

𝜎𝑘 ln𝐹𝑘(𝑥)

where 𝜎 = (𝜎1, ..., 𝜎𝐾)𝑇 , 𝐹 (𝑥) = (𝐹1(𝑥), ..., 𝐹𝐾(𝑥))𝑇

Commonly used for multiclass classification tasks (𝜎 is one-hot
encoded class label)
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Quadratic Loss Function

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

Quadratic loss function:

𝐿(𝐹, (𝑥, 𝜎)) = ||𝐹 (𝑥) − 𝜎||2

Mean loss over data sample 𝒟 :

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿
(︁
𝐹, (𝑥(𝑖), 𝜎(𝑖))

)︁
=

1

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒⃒⃒⃒
𝑦(𝑖) − 𝜎(𝑖)

⃒⃒⃒⃒⃒⃒2
The mean loss 𝐸 for quadratic loss function is called mean squared
error (MSE)

The vector of parameters 𝑤 can be estimated using well-known
least squares method (LSM)
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Binary Classification. Statistical Model of Classes

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

𝜎(𝑖) ∈ {0, 1} — class labels, 𝑖 = 1, ..., 𝑛

Statistical model:
Assume that 𝜎(𝑖) is drawn from Bernoulli distribution:
𝑆𝑖 ∼ 𝐵(1, 𝑝(𝑥(𝑖), 𝑤)), where 𝑝(𝑥(𝑖), 𝑤) = 𝑃 (𝑆𝑖 = 1|𝑥(𝑖), 𝑤)

𝑃 (𝑆𝑖 = 0|𝑥(𝑖), 𝑤) = 1 − 𝑝(𝑥(𝑖), 𝑤)

𝑃 (𝑆𝑖 = 𝑘|𝑥(𝑖), 𝑤) = 𝑝(𝑥(𝑖), 𝑤)𝑘(1 − 𝑝(𝑥(𝑖), 𝑤))1−𝑘, 𝑘 ∈ {0, 1}

The statistical model is characterized by unknown vector of
parameters 𝑤
Given the data sample 𝒟 the vector 𝑤 can be estimated using the
well-known statistical maximum likelihood method (MLE)
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Maximum Likelihood Estimation

The sample likelihood:

ℒ (𝜎(1), ..., 𝜎(𝑛), 𝑤) =

𝑛∏︁
𝑖=1

𝑝(𝑥(𝑖), 𝑤)𝜎
(𝑖)

(1−𝑝(𝑥(𝑖), 𝑤))1−𝜎(𝑖) → max
𝑤

Negative log-likelihood:

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

(︁
𝜎(𝑖) ln 𝑝(𝑥(𝑖), 𝑤) + (1 − 𝜎(𝑖)) ln(1 − 𝑝(𝑥(𝑖), 𝑤))

)︁
→ min

𝑤

𝐸(𝑤) =

𝑛∑︁
𝑖=1

𝐻
(︁
𝜎(𝑖), 𝑝(𝑥(𝑖), 𝑤)

)︁
→ min

𝑤

where 𝐻
(︀
𝜎(𝑖), 𝑝(𝑥(𝑖), 𝑤)

)︀
is a cross-entropy between distributions

𝐵(1, 𝜎(𝑖)) and 𝐵(1, 𝑝(𝑥(𝑖), 𝑤)) (binary cross-entropy)
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Cross-Entropy

Definition
Cross-entropy between distributions 𝑝 and 𝑞 is defined as follows:

𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷𝐾𝐿(𝑝||𝑞)

where 𝐻(𝑝) is the entropy of 𝑝, 𝐷𝐾𝐿(𝑝||𝑞) is the Kullback–Leibler
divergence of 𝑞 from 𝑝 (the relative entropy of 𝑝 with respect to 𝑞)

For discrete case:

𝐻(𝑝) = −
∑︁

𝑝𝑗 log 𝑝𝑗 , 𝐷𝐾𝐿(𝑝||𝑞) = −
∑︁

𝑝𝑗 log
𝑞𝑗
𝑝𝑗

𝐻(𝑝, 𝑞) = −
∑︁

𝑝𝑗 log 𝑞𝑗

The sum is over all possible values of distributions 𝑝 and 𝑞
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MLE Problem and MLP Training

Let’s the MLP’s output 𝑦(𝑥(𝑖), 𝑤) to be in range from 0 to 1 (it
can be achieved by using the logistic activation function for the
output neuron)
Then the MLP’s output 𝑦(𝑥(𝑖), 𝑤) can be interpreted as a
probability 𝑝(𝑥(𝑖), 𝑤) of the class label 1 for input vector 𝑥(𝑖):

𝑦(𝑥(𝑖), 𝑤) = 𝑝(𝑥(𝑖), 𝑤) = 𝑃 (𝑆𝑖 = 1|𝑥(𝑖), 𝑤)

Then, maximum likelihood estimation problem

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

(︁
𝜎(𝑖) ln 𝑦(𝑥(𝑖), 𝑤) + (1 − 𝜎(𝑖)) ln(1 − 𝑦(𝑥(𝑖), 𝑤))

)︁
→ min

𝑤

and the MLP training problem with binary cross-entropy loss
function for binary classification are identical problems
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Multiclass Classification. Statistical Model of Classes

Given:
𝒟 = {(𝑥(1), 𝜎(1)), ..., (𝑥(𝑛), 𝜎(𝑛))} — available data sample

𝜎(𝑖) ∈ {1, ...,𝐾} — class labels, 𝑖 = 1, ..., 𝑛

Statistical model:
Assume that 𝜎(𝑖) is drawn from multinomial distribution:

𝑆𝑖 ∼ 𝑀𝑢𝑙𝑡(1, 𝑝1(𝑥
(𝑖), 𝑤), ..., 𝑝𝐾(𝑥(𝑖), 𝑤))

where 𝑝𝑘(𝑥(𝑖), 𝑤) = 𝑃 (𝑆𝑖 = 𝑘|𝑥(𝑖), 𝑤), 𝑘 ∈ {1, ...,𝐾}

Let’s re-label: 𝜎(𝑖) :=
(︁
𝜎
(𝑖)
1 , ..., 𝜎

(𝑖)
𝐾

)︁
, 𝜎

(𝑖)
𝑘 =

{︃
1, 𝜎(𝑖) = 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

So 𝜎(𝑖) is a binary vector that contains one 1 at 𝑘-th position, other
elements are 0, 𝑖 = 1, ..., 𝑛 (one-hot encoded vector)
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One-Hot Encoding. Illustration

One-hot encoding is a process by which categorical variable 𝑥 with
𝐾 variants is converted into a binary vector 𝑦 that contains one 1
and other elements are 0, such that

𝑥 = 𝑘 ⇔ 𝑦𝑘 = 1, 𝑦𝑖 = 0 ∀𝑖 ̸= 𝑘, 𝑘 = 1, ...,𝐾
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Multiclass Classification. Statistical Model of Classes

Probabilities:

𝑃 (𝑆𝑖 = 𝜎(𝑖)|𝑥(𝑖), 𝑤) =

𝐾∏︁
𝑘=1

(︁
𝑝𝑘(𝑥(𝑖), 𝑤)

)︁𝜎(𝑖)
𝑘

Given the data sample 𝒟 the vector of unknown parameters 𝑤 can
be estimated using the maximum likelihood method (MLE)

The sample likelihood:

ℒ (𝜎(1), ..., 𝜎(𝑛), 𝑤) =

𝑛∏︁
𝑖=1

𝐾∏︁
𝑘=1

(︁
𝑝𝑘(𝑥(𝑖), 𝑤)

)︁𝜎(𝑖)
𝑘 → max

𝑤

Negative log-likelihood:

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝜎
(𝑖)
𝑘 ln 𝑝𝑘(𝑥(𝑖), 𝑤) → min

𝑤
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MLE Problem and MLP Training

Let’s the MLP’s outputs 𝑦1(𝑥(𝑖), 𝑤), ..., 𝑦𝐾(𝑥(𝑖), 𝑤) all to be in

range from 0 to 1 and
𝐾∑︀
𝑘=1

𝑦𝑘(𝑥(𝑖), 𝑤) = 1 for all 𝑖 = 1, ..., 𝑛 (it can

be achieved by using the softmax activation function for the output
layer)
Then the MLP’s output 𝑦𝑘(𝑥(𝑖), 𝑤) can be interpreted as a
probability 𝑝𝑘(𝑥(𝑖), 𝑤) of the class label 𝑘 for input vector 𝑥(𝑖):

𝑦𝑘(𝑥(𝑖), 𝑤) = 𝑝𝑘(𝑥(𝑖), 𝑤) = 𝑃 (𝑆𝑖 = 𝑘|𝑥(𝑖), 𝑤), 𝑘 = 1, ...,𝐾

Maximum likelihood estimation problem

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝜎
(𝑖)
𝑘 ln 𝑦𝑘(𝑥(𝑖), 𝑤) → min

𝑤

and the MLP training problem with multinomial cross-entropy loss
function for multiclass classification are identical problems
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MLP Training as an Optimization Problem

The MLP training is an optimization problem with the given
objective function 𝐸(𝑤)

How to resolve this problem?

The most popular optimization technique is gradient descent:

𝑤(𝜏 + 1) = 𝑤(𝜏) − 𝛼∇𝐸(𝑤(𝜏))

where ∇𝐸(𝑤) =
(︁
𝜕𝐸(𝑤)
𝜕𝑤1

, ..., 𝜕𝐸(𝑤)
𝜕𝑤𝑚

)︁𝑇
is a gradient of objective

𝐸(𝑤) at 𝑤 = (𝑤1, ..., 𝑤𝑚)𝑇 , 𝜏 is the iteration

To apply the gradient descent we need to know how to calculate
partial derivatives of 𝐸(𝑤) with respect to all MLP’s adjustable
parameters from vector 𝑤
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Training of Single-Layer Perceptron

1

𝑖

𝐾

𝑥1

𝑥𝑗

𝑥𝑀

𝑦1

𝑦𝑖

𝑦𝐾

Objective:

𝐸(𝑤) =
1

𝑛

𝑛∑︁
𝑝=1

𝐸(𝑝)(𝑤) → min
𝑤

where 𝐸(𝑝)(𝑤) is a loss on
sample (𝑥(𝑝), 𝜎(𝑝)), 𝑝 = 1, ..., 𝑛

𝜕𝐸(𝑝)

𝜕𝑤𝑖𝑗
=

𝐾∑︁
𝑘=1

𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑘

𝜕𝑦
(𝑝)
𝑘

𝜕𝑤𝑖𝑗
,

𝜕𝑦
(𝑝)
𝑘

𝜕𝑤𝑖𝑗
= 𝑓 ′(ℎ

(𝑝)
𝑘 )

𝜕ℎ
(𝑝)
𝑘

𝜕𝑤𝑖𝑗
= 𝑓 ′(ℎ

(𝑝)
𝑘 )𝑥

(𝑝)
𝑗 𝛿𝑖𝑘

𝜕𝐸(𝑝)

𝜕𝑤𝑖𝑗
=

𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑖

𝑓 ′(ℎ
(𝑝)
𝑖 )𝑥

(𝑝)
𝑗 =

𝜕𝐸(𝑝)

𝜕ℎ
(𝑝)
𝑖

𝑥
(𝑝)
𝑗 = ∆

(𝑝)
𝑖 𝑥

(𝑝)
𝑗

where ∆
(𝑝)
𝑖 = 𝜕𝐸(𝑝)

𝜕ℎ
(𝑝)
𝑖

= 𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑖

𝑓 ′(ℎ
(𝑝)
𝑖 ) is called ’dual’ activation of

𝑖-th neuron, 𝑖 = 1, ...,𝐾
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Training of Single-Layer Perceptron
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𝑤

where 𝐸(𝑝)(𝑤) is a loss on
sample (𝑥(𝑝), 𝜎(𝑝)), 𝑝 = 1, ..., 𝑛

𝜕𝐸(𝑝)

𝜕𝑤𝑖𝑗
=

𝐾∑︁
𝑘=1

𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑘

𝜕𝑦
(𝑝)
𝑘
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𝑘
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(𝑝)
𝑘 )𝑥
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(𝑝)
𝑖 𝑥
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𝑗
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𝐸(𝑝)(𝑤) → min
𝑤

where 𝐸(𝑝)(𝑤) is a loss on
sample (𝑥(𝑝), 𝜎(𝑝)), 𝑝 = 1, ..., 𝑛
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𝜕𝑤𝑖𝑗
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𝜕𝐸(𝑝)
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𝑘
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𝜕𝑤𝑖𝑗
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𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑖

𝑓 ′(ℎ
(𝑝)
𝑖 )𝑥

(𝑝)
𝑗 =

𝜕𝐸(𝑝)

𝜕ℎ
(𝑝)
𝑖

𝑥
(𝑝)
𝑗 = ∆

(𝑝)
𝑖 𝑥

(𝑝)
𝑗
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𝜕ℎ
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Chain Rule

Chain rule is a formula for computing the derivative of the
composition of two or more functions:
if 𝑧 = 𝑓(𝑦) and 𝑦 = 𝑔(𝑥), then

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑓 ′(𝑦)𝑔′(𝑥) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

if 𝑧 = 𝑓(𝑦1, ..., 𝑦𝑛), 𝑦𝑖 = 𝑔𝑖(𝑥1, ..., 𝑥𝑚), then
𝜕𝑧

𝜕𝑥𝑗
=

𝑛∑︁
𝑖=1

𝜕𝑧

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕𝑥𝑗
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Backpropagation Equations

Backpropagation (BP) equations are closed-form expressions for
partial derivatives of loss function 𝐸(𝑝)(𝑤) on the sample
(𝑥(𝑝), 𝜎(𝑝)), 𝑝 = 1, ..., 𝑛, with respect to any synaptic coefficient or
bias of MLP neurons (Rumelhart, 1986):

𝜕𝐸(𝑝)

𝜕𝑤𝑙
𝑖𝑗

= ∆
(𝑝)𝑙
𝑖 𝑦

(𝑝),𝑙−1
𝑗 , 𝑙 = 1, 𝐿, 𝑦(𝑝)0 ≡ 𝑥(𝑝)

∆
(𝑝)𝐿
𝑖 =

𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑖

𝑓 ′
𝐿(ℎ

(𝑝)𝐿
𝑖 ), 𝑖 = 1,𝐾

∆
(𝑝)𝑙
𝑖 =

⎛⎝𝑁𝑙+1∑︁
𝑗=1

∆
(𝑝),𝑙+1
𝑗 𝑤𝑙+1

𝑗𝑖

⎞⎠ 𝑓 ′
𝑙 (ℎ

(𝑝)𝑙
𝑖 ), 𝑙 = 1, 𝐿− 1, 𝑖 = 1, 𝑁𝑙
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Backpropagation Algorithm

Step 1. Apply the input vector 𝑥(𝑝) from the training set to the
network and forward propagate it to obtain the output vector 𝑦(𝑝)

Step 2. Using the target vector 𝜎(𝑝) compute the loss 𝐸(𝑝)

Step 3. Evaluate ’dual’ activations ∆
(𝑝)𝐿
1 , ...,∆

(𝑝)𝐿
𝐾 for each output

neuron
Step 4. Evaluate ’dual’ activations for each hidden neuron using
backward propagation
Step 5. Evaluate derivatives the loss 𝐸(𝑝) with respect to each
adjustable synaptic coefficient and bias
Step 6. Repeat steps 1–6 for each pattern (𝑥(𝑝), 𝜎(𝑝)) from the
training set
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Derivatives of Loss Functions

The backward propagation initiates by the partial derivatives of loss

function
𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
1

, ...,
𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝐾

with respect to MLP outputs

The derivatives of commonly used loss functions are quite simple

Quadratic loss

𝐸(𝑝) = ||𝑦(𝑝) − 𝜎(𝑝)||2 =
𝐾∑︁
𝑘=1

(︁
𝑦
(𝑝)
𝑘 − 𝜎

(𝑝)
𝑘

)︁2
𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑘

= 2
(︁
𝑦
(𝑝)
𝑘 − 𝜎

(𝑝)
𝑘

)︁
where 𝜎

(𝑝)
𝑘 ∈ R, 𝑦(𝑝)𝑘 ∈ R, 𝑘 = 1, ...,𝐾
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Derivatives of Loss Functions

Binary cross-entropy loss (𝐾 = 1)

𝐸(𝑝) = −(𝜎(𝑝) ln 𝑦(𝑝) + (1 − 𝜎(𝑝)) ln(1 − 𝑦(𝑝)))

𝜕𝐸(𝑝)

𝜕𝑦(𝑝)
= −𝜎(𝑝)

𝑦(𝑝)
+

1 − 𝜎(𝑝)

1 − 𝑦(𝑝)

where 𝜎(𝑝) ∈ {0, 1}, 0 < 𝑦(𝑝) < 1
Multinomial cross-entropy loss

𝐸(𝑝) = −
𝐾∑︁
𝑘=1

𝜎
(𝑝)
𝑘 ln 𝑦

(𝑝)
𝑘

𝜕𝐸(𝑝)

𝜕𝑦
(𝑝)
𝑘

= −
𝜎
(𝑝)
𝑘

𝑦
(𝑝)
𝑘

where 𝜎(𝑝) = (𝜎
(𝑝)
1 , ..., 𝜎

(𝑝)
𝐾 )𝑇 is one-hot encoded class label,

0 < 𝑦
(𝑝)
𝑘 < 1, 𝑘 = 1, ...,𝐾,

∑︀𝐾
𝑘=1 𝑦

(𝑝)
𝑘 = 1
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Quadratic vs Cross-Entropy Loss

The derivatives for a neuron with sigmoid activation function 𝑓(ℎ)

For quadratic loss:

𝜕𝐸(𝑝)

𝜕𝑤𝑗
=

𝜕𝐸(𝑝)

𝜕𝑦(𝑝)
𝜕𝑦(𝑝)

𝜕ℎ(𝑝)
𝜕ℎ(𝑝)

𝜕𝑤𝑗
= 2

(︁
𝑦(𝑝) − 𝜎(𝑝)

)︁
𝑓 ′(ℎ(𝑝))𝑥

(𝑝)
𝑗

For cross-entropy loss:

𝜕𝐸(𝑝)

𝜕𝑤𝑗
=

𝜕𝐸(𝑝)

𝜕𝑦(𝑝)
𝜕𝑦(𝑝)

𝜕ℎ(𝑝)
𝜕ℎ(𝑝)

𝜕𝑤𝑗
=

(︃
−𝜎(𝑝)

𝑦(𝑝)
+

1 − 𝜎(𝑝)

1 − 𝑦(𝑝)

)︃
𝑓 ′(ℎ(𝑝))𝑥

(𝑝)
𝑗

=
𝑦(𝑝) − 𝜎(𝑝)

𝑦(𝑝)(1 − 𝑦(𝑝))

(︁
𝑦(𝑝)(1 − 𝑦(𝑝))

)︁
𝑥
(𝑝)
𝑗 =

(︁
𝑦(𝑝) − 𝜎(𝑝)

)︁
𝑥
(𝑝)
𝑗

For quadratic loss the partial derivative 𝜕𝐸(𝑝)

𝜕𝑤𝑗
contains 𝑓 ′(ℎ(𝑝)) that

is close to 0 if neuron’s output 𝑦(𝑝) is close to targets 0 or 1
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Quadratic vs Cross-Entropy Loss. Illustration

Training process
for quadratic loss

Training process
for cross-entropy loss

For cross-entropy loss the partial derivatives 𝜕𝐸(𝑝)

𝜕𝑤𝑗
depend linearly

on neuron’s error
(︀
𝑦(𝑝) − 𝜎(𝑝)

)︀
: the larger the error, the faster the

neuron will learn
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