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Non-parametric Regression Analysis

Regression model:

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥)

where 𝜙(𝑥) = M[𝑌 |𝑥] is a regression function, 𝜀(𝑥) is a random
error (noise)
Non-parametric regression analysis doesn’t require any explicit
assumptions about conditional distribution 𝐹𝑌 (𝑦|𝑥) or regression
function 𝜙(𝑥)

How to estimate the regression function using the data only?
In very large samples it is possible to estimate 𝜙(𝑥) by directly
examining the conditional distribution of 𝑌 given the 𝑥, 𝑥 ∈ 𝒳

For discrete explanatory variables:
Estimating conditional means for each discrete value of 𝑋
For continuous explanatory variables:
Dissecting the 𝑋1, ..., 𝑋𝑘 into a large number of narrow bins
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Conditional Means. Illustration

The conditional mean estimator:

𝜙(𝑥) = 𝑚̂𝑌 |𝑥 =
1

𝑛(𝑥)

∑︁
𝑖:𝑥𝑖=𝑥

𝑦𝑖 =
1

𝑛∑︀
𝑖=1

[𝑥𝑖 = 𝑥]

𝑛∑︁
𝑖=1

𝑦𝑖[𝑥𝑖 = 𝑥]

where 𝑛(𝑥) is a number of observations at 𝑥
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Dissection of Explanatory Variable. Illustration
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Binned Regression

The input space is divided into equal-sized intervals named bins

Given an origin 𝑥0 and a bin width ℎ, the bins are the intervals

Δ1 = [𝑥0, 𝑥0 + ℎ), ...,Δ𝑘 = [𝑥0 + (𝑘 − 1)ℎ, 𝑥0 + 𝑘ℎ)

where 𝑘 is the number of bins

The regression estimator:

𝜙(𝑥) =
1

𝑛𝑙

∑︁
𝑖:𝑥𝑖∈Δ𝑙

𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖[𝑥𝑖 ∈ Δ𝑙]

𝑛∑︀
𝑖=1

[𝑥𝑖 ∈ Δ𝑙]

, for 𝑥 ∈ Δ𝑙

where 𝑛𝑙 is the number of data points in interval Δ𝑙, 𝑙 ∈ {1, ..., 𝑘}

The estimator requires two parameters: bin width ℎ and origin 𝑥0
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Binned Regression. Illustration

The plot of binned regression is called as regressogram

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑔𝑟𝑎𝑚 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛+ ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚

Alexander Trofimov Non-parametric Regression 6 / 55



Kernel Regression
Linear Smoothing and LOESS

Naive Regression
Kernel Regression
KNN Regression

Binned Regression. Notes

Advantages:

It’s easy to discover, implement, and explain
Captures non-linear behaviour of the predictor-response
relationship

Drawbacks:

The regression function 𝜙(𝑥) is assumed to be constant inside
bins
The estimated regression function 𝜙(𝑥) is a piecewise constant
function
The discontinuities of the estimate
The 𝜙(𝑥) depends on the origin 𝑥0

The curse of dimensionality: the number of bins grows
exponentially with the number of regressors
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Naive Regression

Naive estimator of 𝜙(𝑥):

𝜙(𝑥) =

𝑛∑︀
𝑖=1

𝑦𝑖[𝑥− ℎ/2 ≤ 𝑥𝑖 < 𝑥+ ℎ/2]

𝑛∑︀
𝑖=1

[𝑥− ℎ/2 ≤ 𝑥𝑖 < 𝑥+ ℎ/2]

=

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖

where

𝑤𝑖(𝑥) =
[𝑥− ℎ/2 ≤ 𝑥𝑖 < 𝑥+ ℎ/2]
𝑛∑︀

𝑙=1

[𝑥− ℎ/2 ≤ 𝑥𝑙 < 𝑥+ ℎ/2]

=

[︀⃒⃒
𝑥−𝑥𝑖
ℎ

⃒⃒
< 1

2

]︀
𝑛∑︀

𝑙=1

[︀⃒⃒
𝑥−𝑥𝑙
ℎ

⃒⃒
< 1

2

]︀
=

{︃
1

𝑛(𝑥) ,
⃒⃒
𝑥−𝑥𝑖
ℎ

⃒⃒
< 1

2 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑛(𝑥) is the number of points in the neighbourhood around 𝑥
Alexander Trofimov Non-parametric Regression 8 / 55
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Naive Regression. Illustration

Naive regression plot (.gif)
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Box Kernel

The weights of the naive estimator can be written as:

𝑤𝑖(𝑥) =

[︀⃒⃒
𝑥−𝑥𝑖
ℎ

⃒⃒
< 1

2

]︀
𝑛∑︀

𝑙=1

[︀⃒⃒
𝑥−𝑥𝑙
ℎ

⃒⃒
< 1

2

]︀ =
𝐾(𝑥−𝑥𝑖

ℎ )
𝑛∑︀

𝑙=1

𝐾(𝑥−𝑥𝑙
ℎ )

where 𝐾(𝑢) =

{︃
1, |𝑢| < 1/2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
is the box kernel function

Naive regression estimator:

𝜙(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖𝐾(𝑥−𝑥𝑖
ℎ )

𝑛∑︀
𝑙=1

𝐾(𝑥−𝑥𝑙
ℎ )
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Naive Regression. Notes

The weights 𝑤𝑖(𝑥), 𝑖 = 1, 𝑛, are not continuous functions and
have jumps at 𝑥𝑖 ± ℎ/2

The estimate 𝜙(𝑥) has discontinuities
The naive regression acts like a moving average filter, the
moving average window size is defined by the smoothing
parameter ℎ
The regression function 𝜙(𝑥) is assumed to be a constant
inside the moving window, 𝜙(𝑥) ≡ 𝑐 ∀𝑥 ∈ Δℎ(𝑥). Under this
assumption, the estimate 𝜙(𝑥) is unbiased:

M[𝜙(𝑥)] = M

⎡⎣ 1

𝑛(𝑥)

∑︁
𝑥𝑖∈Δℎ(𝑥)

𝑌 |𝑥𝑖

⎤⎦ = 𝜙(𝑥)

where Δℎ(𝑥) = [𝑥− ℎ/2, 𝑥+ ℎ/2)

The estimates at the ends of the data range are unreliable
Alexander Trofimov Non-parametric Regression 11 / 55
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Region of Influence. Illustration

𝑤𝑖(𝑥) =
𝐾(𝑥−𝑥𝑖

ℎ )
𝑛∑︀

𝑙=1

𝐾(𝑥−𝑥𝑙
ℎ )

, 𝑖 = 1, 𝑛

Each 𝑥𝑖 has a symmetric region
of influence of size ℎ around it
and contributes 1 for an 𝑥 falling
in its region

The weight 𝑤𝑖(𝑥) is influence of
𝑥𝑖 on 𝑥 among overall influences
of 𝑥1, ..., 𝑥𝑛 on 𝑥

For box kernel the influences from
all 𝑥1, ..., 𝑥𝑛 are hard (0 or 1)
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Kernel Estimator

Kernel regression estimator:

𝜙(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖𝐾(𝑥−𝑥𝑖
ℎ )

𝑛∑︀
𝑙=1

𝐾(𝑥−𝑥𝑙
ℎ )

where 𝐾(𝑢) is the kernel function, ℎ is the smoothing parameter
also called the bandwidth

Kernel regression estimator was proposed in 1964 and it’s also
called as Nadaraya-Watson estimator

The naive estimator is a particular case of kernel estimator with box
kernel function
For naive estimator, the estimate 𝜙(𝑥) has discontinuities

How can this problem be solved?
Alexander Trofimov Non-parametric Regression 13 / 55
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Properties of Kernel Function

Idea: instead of giving equal weight to every point in the region of
influence of 𝑥𝑖, let’s assign a weight which decays toward zero in a
continuous fashion as we get further away from 𝑥𝑖, 𝑖 = 1, ..., 𝑛

Kernel function 𝐾(𝑢) is usually chosen as a symmetric probability
density function satisfying the conditions:

𝐾(𝑢) ≥ 0 ∀𝑢 ∈ R∫︀∞
−∞𝐾(𝑢)𝑑𝑢 = 1

𝐾(𝑢) = 𝐾(−𝑢) ∀𝑢 ∈ R∫︀∞
−∞ 𝑢𝐾(𝑢)𝑑𝑢 = 0∫︀∞
−∞ 𝑢2𝐾(𝑢)𝑑𝑢 = 𝜎2

𝐾 < ∞
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Types of Kernel Functions

Box (uniform) kernel: 𝐾(𝑢) =

{︃
1
2 , |𝑢| < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Gaussian kernel: 𝐾(𝑢) =
1√
2𝜋

exp

(︂
−𝑢2

2

)︂

Epanechnikov kernel: 𝐾(𝑢) =

{︃
3
4(1− 𝑢2), |𝑢| < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Triangular kernel: 𝐾(𝑢) =

{︃
1− |𝑢|, |𝑢| < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Kernel Functions. Illustration
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Gaussian Kernel Regression. Illustration 1
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Gaussian Kernel Regression. Illustration 2

ℎ = 0.1 (blue), ℎ = 0.3 (green), ℎ = 0.5 (red), ℎ = 1 (cyan)
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Gaussian Kernel Regression. Illustration 3
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Kernel Regression. Notes

The estimate 𝜙(𝑥) is a weighted sum of responses 𝑦1, ..., 𝑦𝑛
with weights 𝑤1(𝑥), ..., 𝑤𝑛(𝑥), where

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥) = 1 and 𝑤𝑖(𝑥) > 0, 𝑖 = 1, 𝑛

It’s a kind of linear smoothing techniques
It’s a kind of local regression techniques: only the observations
close to the query point are considered for regression
computation
An observation point gets a weight that decreases as its
distance from the query point increases
No need for offline training
It’s a memory-based technique as it requires entire training set
to be available while regressing
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KNN Regression

The idea of 𝐾 nearest neighborhood regression (KNN regression) is
to identify 𝐾 training observations that are closest to the query
point and to average responses over them:

𝜙(𝑥) =
1

𝐾

∑︁
𝑥𝑖∈Δ𝐾(𝑥)

𝑦𝑖

where Δ𝐾(𝑥) is the neighborhood of 𝑥 that contains 𝐾 closest
points from the training data 𝑥1, ..., 𝑥𝑛

KNN regression can be seen as box kernel regression with varying
bandwidth ℎ(𝑥) that depends on 𝑥 so that the symmetric window
around 𝑥 contains 𝐾 data points:

𝜙(𝑥) =
𝑛∑︁

𝑖=1

𝑤𝑖(𝑥)𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖𝐾(𝑥−𝑥𝑖
ℎ(𝑥) )

𝑛∑︀
𝑖=1

𝐾(𝑥−𝑥𝑖
ℎ(𝑥) )
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KNN Regression. Illustration
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KNN Regression. Notes

The estimate 𝜙(𝑥) has discontinuities
KNN regression can be used with other kernels (Gaussian,
triangular, etc.)
It’s a kind of linear smoothing techniques
It’s a kind of local regression techniques
In KNN regression the amount of smoothing is adapted with
according to the density of the predictor
A small value of 𝐾 provides the most flexible fit, which will
have low bias but high variance
Larger values of 𝐾 provide a smoother and less variable fit,
too large 𝐾 results to high bias
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KNN Regression. Illustration 1
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KNN Regression. Illustration 2

For 𝐾 = 1 the estimate passes through all training data
Lower 𝐾 results to overfitting, the model is influenced too much by
the noisy data
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KNN Regression. Illustration 3

For larger 𝐾, KNN with box kernel still has discontinuities, the
estimate is not rather smooth
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KNN Regression. Illustration 4

For 𝐾 = 𝑛 the estimated regression function is a horizontal line
Larger 𝐾 results to underfitting, the model is not influenced
enough by the training data
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Smoothing

The non-parametric regression is related to the concept of data
smoothing

Data smoothing (curve fitting, or low pass filtering) is the process
of removing noise from dataset that allows important patterns in
data to stand out

The regression model of response 𝑌 for a given 𝑥 ∈ 𝒳 :

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥)

where 𝜙(𝑥) = M[𝑌 |𝑥] is regression function, 𝜀(𝑥) is a noise,
M[𝜀(𝑥)] = 0, ∀𝑥 ∈ 𝒳 , and D[𝜀(𝑥)] = 𝜎2

𝑥

By removing the noise 𝜀(𝑥), we obtain the estimate 𝜙(𝑥) of the
regression function 𝜙(𝑥)

The regression estimators based on data smoothing are called as
smoothers
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Linear Smoothing

Definition
For a given sample (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛), an estimator 𝜙(𝑥) of
regression function 𝜙(𝑥) is a linear smoother if, for each 𝑥 ∈ 𝒳 ,
there exists a vector 𝑤(𝑥) = (𝑤1(𝑥), ..., 𝑤𝑛(𝑥)) such that

𝜙(𝑥) = 𝑤(𝑥)𝑦 =

𝑛∑︁
𝑗=1

𝑤𝑗(𝑥)𝑦𝑗

The linearly smoothed sample:

𝑦𝑖 = 𝜙(𝑥𝑖) =

𝑛∑︁
𝑗=1

𝑤𝑗(𝑥𝑖)𝑦𝑗 , 𝑖 = 1, ..., 𝑛

where 𝑤𝑗(𝑥𝑖) is a contribution of observation 𝑦𝑗 to the smoothed
value 𝑦𝑖
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Smoothing Matrix

Linear smoothing in matrix form:

𝑦 = 𝑊𝑦

where
𝑦 = (𝑦1, ..., 𝑦𝑛)

𝑇 is a vector of responses,
𝑦 = (𝜙(𝑥1), ..., 𝜙(𝑥𝑛))

𝑇 is the vector of fitted values at 𝑥1, ..., 𝑥𝑛,
𝑊 is the smoother matrix:

𝑊 =

⎛⎝𝑤1(𝑥1) ... 𝑤𝑛(𝑥1)
... ... ...

𝑤1(𝑥𝑛) ... 𝑤𝑛(𝑥𝑛)

⎞⎠
In parametric regression analysis the smoother matrix is called as
hat matrix, 𝑊 = 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇

Linear regression, kernel regression and KNN regression are kinds of
linear smoothers
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Unbiasedness of Linear Smoother

Is the estimate 𝜙(𝑥) unbiased?

M[𝜙(𝑥)] =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)M[𝑌 |𝑥𝑖]
?
= 𝜙(𝑥)

If the contributions 𝑤𝑖(𝑥), 𝑖 = 1, 𝑛, are non-zero only in a small
neighbourhood Δℎ(𝑥) around 𝑥 where the regression function is
locally constant, M[𝑌 |𝑥𝑖] = 𝑐, ∀𝑥𝑖 ∈ Δℎ(𝑥), then the estimate
𝜙(𝑥) is unbiased

We need small bandwidth ℎ to hold assumptions of approximately
constant 𝜙(𝑥), but a small number of data points will be used to
average and obtain estimate 𝜙(𝑥)

Is it possible to use larger window sizes without the bias to
be increased?

Alexander Trofimov Non-parametric Regression 31 / 55
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Locally Linear Regression

Idea: instead of assuming the regression function 𝜙(𝑥) is
approximately constant in a window, let’s assume it is locally linear

Taylor expansion of 𝜙(𝑥) in the neighborhood of 𝑥:

𝜙(𝑥𝑖) = 𝜙(𝑥) + 𝜙′(𝑥)(𝑥𝑖 − 𝑥) + 𝑜(𝑥𝑖 − 𝑥), 𝑥𝑖 ∈ Δℎ(𝑥)

Since 𝜙(𝑥) and 𝜙′(𝑥) are unknown, let’s fit them!

Local OLS criterion:

𝐸(𝑥) =
∑︁

𝑥𝑖∈Δℎ(𝑥)

(𝑦𝑖 − 𝜙(𝑥𝑖))
2 ≈

∑︁
𝑥𝑖∈Δℎ(𝑥)

[𝑦𝑖 − (𝜙(𝑥) + 𝜙′(𝑥)(𝑥𝑖 − 𝑥))]2

=
∑︁

𝑥𝑖∈Δℎ(𝑥)

[𝑦𝑖 − (𝛽0 + 𝛽1(𝑥𝑖 − 𝑥))]2 → min
𝛽0,𝛽1

where 𝛽0 = 𝜙(𝑥), 𝛽1 = 𝜙′(𝑥)
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Local OLS Criterion

Local OLS criterion is the sum of errors over the neighbourhood
Δℎ(𝑥), let’s rewrite:

𝐸(𝑥) =

𝑛∑︁
𝑖=1

𝐾

(︂
𝑥− 𝑥𝑖

ℎ

)︂
[𝑦𝑖 − (𝛽0 + 𝛽1(𝑥𝑖 − 𝑥))]2 → min

𝛽0,𝛽1

In matrix form:

𝐸(𝑥) = (𝑦 −𝑋𝛽)𝑇𝑉 (𝑦 −𝑋𝛽) → min
𝛽

where 𝑦 = (𝑦1, ..., 𝑦𝑛)
𝑇 is vector of responses, 𝛽 = (𝛽0, 𝛽1)

𝑇 is
vector of parameters, 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑥1 − 𝑥
... ...
1 𝑥𝑛 − 𝑥

⎞⎠
and 𝑉 is weight matrix: 𝑉 = 𝑑𝑖𝑎𝑔

[︀
𝐾

(︀
𝑥−𝑥1
ℎ

)︀
, ...,𝐾

(︀
𝑥−𝑥𝑛

ℎ

)︀]︀
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Locally Linear Estimator

The local OLS problem 𝐸(𝑥) → min
𝛽

is indeed a weighted least

squares (WLS) problem

The solution:
𝛽 = (𝑋𝑇𝑉 𝑋)−1𝑋𝑇𝑉 𝑦

The estimate 𝜙(𝑥):

𝜙(𝑥) = 𝛽0 = (1 0)𝛽 = (1 0)(𝑋𝑇𝑉 𝑋)−1𝑋𝑇𝑉 𝑦

= 𝑤(𝑥)𝑦 =

𝑛∑︁
𝑗=1

𝑤𝑗(𝑥)𝑦𝑗

where
𝑤(𝑥) = (1 0)(𝑋𝑇𝑉 𝑋)−1𝑋𝑇𝑉

The locally linear estimator is a weighted linear combination of the
responses, and like Nadaraya–Watson estimator, it’s a kind of linear
smoothers
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Locally Linear Regression. Illustration 1

Locally linear regression plot (.gif)
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Locally Linear Regression. Illustration 2

Locally linear regression for different bandwidths (.gif)
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Locally Linear Regression. Notes

Advantages:
Locally linear regression is more general that locally constant
(Nadaraya-Watson) regression, and it has lower bias
It relies on the local data structure when performing the local
fitting
The process of fitting a model to the sample data does not
require the specification of a regression function 𝜙(𝑥)

Logical simplicity of the method

Drawbacks:
It does not produce an estimate 𝜙(𝑥) that is easily represented
by a mathematical formula
Can be inefficient at discovering some relatively simple (e.g.,
linear) structures in data
Computationally intensive method
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LOESS Estimator

The locally linear regression can be generalized to locally
polynomial regression:

𝜙(𝑥𝑖) ≈ 𝜙(𝑥)+𝜙′(𝑥)(𝑥𝑖−𝑥)+
𝜙′′(𝑥)

2
(𝑥𝑖−𝑥)2+...+

𝜙(𝑘)(𝑥)

𝑘!
(𝑥𝑖−𝑥)𝑘

The regression function 𝜙(𝑥) is locally approximated by a 𝑘-order
polynomial in the neighbourhood Δℎ(𝑥), 𝑥 ∈ 𝒳 :

𝐸 =
∑︁

𝑥𝑖∈Δℎ(𝑥)

(𝑦𝑖 − 𝜙(𝑥𝑖))
2 ≈

∑︁
𝑥𝑖∈Δℎ(𝑥)

(𝑦𝑖 − 𝑥′𝑖𝛽)
2 → min

𝛽

where
𝑥′𝑖 = (1, 𝑥𝑖 − 𝑥, ..., 1

𝑘!(𝑥𝑖 − 𝑥)𝑘), 𝛽 = (𝜙(𝑥), 𝜙′(𝑥), ..., 𝜙(𝑘)(𝑥))𝑇

The local polynomial estimator was proposed by W. Cleveland in
1979, further developed in 1988, and called as LOESS estimator
(LOcally Estimated Scatterplot Smoothing)
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LOESS Estimator. Notes

The idea of local polynomial regression was proposed by
A. Savitzky and M. Golay in 1964
The polynomial order 𝑘 shouldn’t be large. The idea is that
regression function can be well approximated in a small
neighborhood by a low-order polynomial and that simple
models can be fitted to data easily
High-degree polynomials would tend to overfit the data in each
window and are numerically unstable, making accurate
computations difficult
Nadaraya-Watson regression is a particular case of locally
polynomial regression if 𝑘 = 0

Locally linear regression is a particular case of locally
polynomial regression if 𝑘 = 1

In LOESS regression the bandwidth ℎ is usually controlled by
the number of points in the moving window

Alexander Trofimov Non-parametric Regression 39 / 55



Kernel Regression
Linear Smoothing and LOESS

Locally Linear Regression
Bandwidth Selection
Multiple Kernel Regression

Bias-Variance Decomposition

How to choose the bandwidth ℎ?

Selecting the bandwidth ℎ for the kernel estimator is primarily a
matter of trial and error – we want ℎ to be small enough to reveal
details but large enough to suppress random noise

Expectation of squared error estimate at given 𝑥:

𝑒2(𝑥) = M
[︀
(𝜙(𝑥)− 𝜙(𝑥))2

]︀
= M

[︀
𝜙2(𝑥)

]︀
− 2𝜙(𝑥)M [𝜙(𝑥)] + 𝜙2(𝑥)

= D [𝜙(𝑥)] + (M [𝜙(𝑥)])2 − 2𝜙(𝑥)M [𝜙(𝑥)] + 𝜙2(𝑥)

= D [𝜙(𝑥)] + (M [𝜙(𝑥)]− 𝜙(𝑥))2 = 𝑉 𝑎𝑟(𝑥) +𝐵𝑖𝑎𝑠2(𝑥)

Two sources of error in regression estimation:
Bias
It’s a systematic error incurred in the estimation
Variance
It’s a random error incurred in the estimation
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Bias, Variance and Bandwidth

It can be shown that

𝑉 𝑎𝑟(𝑥) ≈ 𝑅(𝐾)

𝑛ℎ𝑓𝑋(𝑥)
𝜎2(𝑥)

for 𝑘 = 0 : 𝐵𝑖𝑎𝑠(𝑥) ≈ 𝜇2(𝐾)

2

[︂
𝜙′′(𝑥) + 2

𝜙′(𝑥)𝑓 ′
𝑋(𝑥)

𝑓𝑋(𝑥)

]︂
ℎ2

for 𝑘 = 1 : 𝐵𝑖𝑎𝑠(𝑥) ≈ 𝜇2(𝐾)

2
𝜙′′(𝑥)ℎ2

where 𝜇2(𝐾) is the 2-nd moment of kernel 𝐾, 𝑓𝑋(𝑥) is the pdf of
𝑋, 𝑅(𝐾) =

∫︀∞
−∞𝐾2(𝑢)𝑑𝑢, 𝜎2(𝑥) = D[𝑌 |𝑥] is the variance of noise

Trade-off between 𝐵𝑖𝑎𝑠(𝑥) and 𝑉 𝑎𝑟(𝑥) depends on bandwidth ℎ:
Small ℎ ⇒ small bias at the expense of a larger variance in
the estimates for different training samples (undersmoothing)
Large ℎ ⇒ small differences among the estimates for different
training samples (oversmoothing)
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Bias, Variance and Bandwidth. Illustration
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Bias, Variance and Bandwidth. Notes

The bias decreases with ℎ quadratically both for
Nadaraya-Watson regression and locally linear regression
Small bandwidths ℎ give estimators with low bias, whereas large
bandwidths provide largely biased estimators

The bias at 𝑥 is directly proportional to 𝜙′′(𝑥) if 𝑘 = 1 or
affected by 𝜙′′(𝑥) if 𝑘 = 0

The higher the curvature of 𝜙(𝑥) the higher the bias

The variance is inversely proportional to the density 𝑓𝑋(𝑥)

The lower the density 𝑓𝑋(𝑥), the more variable the estimate 𝜙(𝑥)

The variance decreases at a factor of (𝑛ℎ)−1 which can be
thought of as the amount of data in the neighborhood of 𝑥
that is employed for performing the regression

The locally linear regression has smaller bias than
Nadaraya-Watson regression while keeping the same variance
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Optimal Bandwidth

Mean integrated squared error (MISE) of estimator 𝜙(𝑥):

𝑀𝐼𝑆𝐸(𝜙) = M[𝑒2(𝑥)] =

∞∫︁
−∞

[︀
𝑉 𝑎𝑟(𝜙(𝑥)) +𝐵𝑖𝑎𝑠2(𝑥)

]︀
𝑓𝑋(𝑥)𝑑𝑥

For 𝑘 = 1:

𝑀𝐼𝑆𝐸(𝜙) =
𝑅(𝐾)

𝑛ℎ

∞∫︁
−∞

𝜎2(𝑥)𝑑𝑥+ℎ4
∞∫︁

−∞

(︂
𝜇2(𝐾)

2
𝜙′′(𝑥)𝑓𝑋(𝑥)

)︂2

𝑑𝑥

The bandwidth ℎ𝑀𝐼𝑆𝐸 that minimizes the MISE:

ℎ𝑀𝐼𝑆𝐸 =

(︂
𝑅(𝐾)

∫︀
𝜎2(𝑥)𝑑𝑥

𝜇2
2(𝐾)

∫︀
𝜙′′(𝑥)2𝑓2

𝑋(𝑥)𝑑𝑥

)︂1/5

𝑛−1/5
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Bandwidth Selection Approaches

Guided trial and error
If the fitted regression looks too rough, then try increasing the
bandwidth; if it looks oversmoothed, then try decreasing it

Assumptions about 𝜙(𝑥)
Optimal bandwidth ℎ𝑀𝐼𝑆𝐸 depends on unknown regression
function 𝜙(𝑥). It can be calculated only under certain
assumptions about 𝜙(𝑥)

Cross-validation methods
The optimal bandwidth ℎ𝐶𝑉 = argmin

ℎ>0
𝐸𝐶𝑉 (ℎ), where

𝐸𝐶𝑉 (ℎ) is average error over validation sample for a given ℎ

Plug-in methods
Replace 𝜙′′(𝑥) in ℎ𝑀𝐼𝑆𝐸 expression to an estimation 𝜙′′(𝑥) at
pilot bandwidth 𝑔 = 𝑔(ℎ𝑀𝐼𝑆𝐸), and 𝜎2(𝑥) to the estimated
variance of errors under homoscedasticity assumption
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Multiple Kernel Regression

Let’s consider that there is 𝑚 explanatory variables 𝑥1, ..., 𝑥𝑚

Regression model:

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥)

where 𝑥 = (𝑥1, ..., 𝑥𝑚) is a vector of regressors, 𝜙(𝑥) = M[𝑌 |𝑥] is
regression function, 𝜀(𝑥) is a random error (noise)

Kernel regression estimator:

𝜙(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖𝐾(𝑥−𝑥𝑖
ℎ )

𝑛∑︀
𝑖=1

𝐾(𝑥−𝑥𝑖
ℎ )

The kernel function 𝐾(𝑢) should be multivariable, 𝐾(𝑢1, ..., 𝑢𝑚)

How to construct multivariable kernel function 𝐾(𝑢) in
𝑚-dimensional space?
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Product Kernel Regression Estimator

Idea: since the kernel is a probability density function of some
random vector, let’s assume that it’s independent random vector

Product kernel:

𝐾(𝑢) = 𝐾(𝑢1) · ... ·𝐾(𝑢𝑚)

Product kernel regression estimator:

𝜙(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖 =

𝑛∑︀
𝑖=1

𝑦𝑖
𝑚∏︀
𝑗=1

𝐾(
𝑥𝑗−𝑥𝑗𝑖

ℎ𝑗
)

𝑛∑︀
𝑙=1

𝑚∏︀
𝑗=1

𝐾(
𝑥𝑗−𝑥𝑗𝑖

ℎ𝑗
)

𝐾(𝑢) is a box kernel ⇒ the region of influence is hypercube
𝐾(𝑢) is a Gaussian kernel ⇒ the region of influence is multivariate
gaussian

Alexander Trofimov Non-parametric Regression 47 / 55



Kernel Regression
Linear Smoothing and LOESS

Locally Linear Regression
Bandwidth Selection
Multiple Kernel Regression

Multivariate Kernels. Illustration 1

Squared point is a point of interest, grey area is the region of influence
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Multivariate Kernels. Illustration 2

More sophisticated multivariate kernels can be constructed
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Multiple Kernel Regression. Illustration

Multivariate kernel regression function with Gaussian kernel is a
type of multivariate radial-basis function (RBF) regression
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Unbiasedness of Multiple Kernel Estimator

Kernel regression estimator:

𝜙(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖

The multiple kernel estimator is a generalization of simple kernel
(Nadaraya-Watson) estimator to the multidimensional case

The regression function 𝜙(𝑥) should be locally constant in
multidimensional area Δℎ(𝑥), M[𝑌 |𝑥𝑖] = 𝑐, ∀𝑥𝑖 ∈ Δℎ(𝑥), for the
estimate 𝜙(𝑥) to be unbiased

We need small bandwidths ℎ1, ..., ℎ𝑚 of multivariate kernel to hold
assumptions of approximately constant 𝜙(𝑥), but a small number
of data points will be used to average and obtain estimate 𝜙(𝑥)

Is it possible to use larger window sizes without the bias to
be increased?
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Locally Linear Multiple Regression

Idea: instead of assuming the regression function 𝜙(𝑥) is
approximately constant in a window, let’s assume it is locally linear

Taylor expansion of 𝜙(𝑥) in the neighborhood of 𝑥:

𝜙(𝑥𝑖) ≈ 𝜙(𝑥) +
𝜕𝜙(𝑥)

𝜕𝑥1
(𝑥1𝑖 − 𝑥1) + ...+

𝜕𝜙(𝑥)

𝜕𝑥𝑚
(𝑥𝑚𝑖 − 𝑥𝑚)

Local OLS criterion:

𝐸(𝑥) =
∑︁

𝑥𝑖∈Δℎ(𝑥)

(𝑦𝑖 − 𝜙(𝑥𝑖))
2

=

𝑛∑︁
𝑖=1

𝐾

(︂
𝑥− 𝑥𝑖

ℎ

)︂⎡⎣𝑦𝑖 −
⎛⎝𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗(𝑥𝑗𝑖 − 𝑥𝑗)

⎞⎠⎤⎦2

where
𝛽0 = 𝜙(𝑥), 𝛽𝑗 =

𝜕𝜙(𝑥)

𝜕𝑥𝑗
, 𝑗 = 1,𝑀
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Multiple LOESS

Local OLS criterion in matrix form:

𝐸(𝑥) = (𝑦 −𝑋𝛽)𝑇𝑉 (𝑦 −𝑋𝛽) → min
𝛽

where 𝑦 = (𝑦1, ..., 𝑦𝑛)
𝑇 is vector of responses, 𝛽 = (𝛽0, ..., 𝛽𝑚)𝑇 is

vector of parameters, 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑥11 − 𝑥1 ... 𝑥𝑚1 − 𝑥𝑚
... ... ... ...
1 𝑥1𝑛 − 𝑥1 ... 𝑥𝑚𝑛 − 𝑥𝑚

⎞⎠ =

⎛⎝ 1 𝑥1 − 𝑥
... ...
1 𝑥𝑛 − 𝑥

⎞⎠
and 𝑉 is weight matrix:

𝐾 = 𝑑𝑖𝑎𝑔

[︂
𝐾

(︂
𝑥− 𝑥1

ℎ

)︂
, ...,𝐾

(︂
𝑥− 𝑥𝑛

ℎ

)︂]︂
The problem 𝐸(𝑥) → min

𝛽
is a weighted least squares problem
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Problems of Non-parametric Multiple Regression

The curse of dimensionality
As the number of explanatory variables increases, the number
of points in the neighbourhood Δℎ(𝑥) tends to decline rapidly
(the phenomenon of the empty spaces). The hypersphere of
fixed radius becomes an insignificant volume in
multidimensional space. The sample becomes very sparse

Difficulties of interpretation
Because non-parametric regression does not provide an
equation relating the average response to the explanatory
variables, we must display the response surface graphically. It
can be complicated in multidimensional space

Non-parametric multiple regression (LOESS, KNN, etc.) is
appropriate only for small number of explanatory variables (𝑚 . 5)
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Data in Higher Dimensions

As 𝑚 increases, the data become sparse in any given neighborhood
of fixed radius
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