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Problem Statement

Given:
𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample
(𝑥(𝑖), 𝑦(𝑖)) ∈ 𝒳 × 𝒴 , 𝑖 = 1, ..., 𝑛

𝒳 = R𝑀 — feature space, 𝒴 = {−1, 1} — class labels

We consider that 𝑦 is a response of unknown mapping
𝐹 : 𝒳 → 𝒴 , 𝑦(𝑖) = 𝐹 (𝑥(𝑖)), 𝑖 = 1, ..., 𝑛

Build:
Hypothesis ℎ ∈ ℋ , ℋ = {ℎ : ℎ(𝑥), ℎ(𝑥) ∈ 𝒴 }, that estimates
the unknown mapping 𝐹

Assumption:
Class of hypotheses ℋ = {ℎ : ℎ(𝑥) = sign𝜙(𝑥,𝑤)},
where 𝜙(𝑥,𝑤) ∈ R — classification score for object 𝑥 ∈ 𝒳

𝑤 ∈ R𝐿 — vector of parameters
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Linear Classifier

Feature vector 𝑥 = (𝑥0, 𝑥1, ..., 𝑥𝑀 )𝑇 ∈ R𝑀+1, 𝑥0 ≡ 1

Definition
Linear classifier is a classifier that makes the decision ℎ(𝑥) based on
the value of a linear combination of the features 𝑥0, ..., 𝑥𝑀

Classification score for object 𝑥 ∈ 𝒳 :

𝜙(𝑥,𝑤) = 𝑤0 + 𝑤1𝑥1 + ... + 𝑤𝑀𝑥𝑀 = 𝑤𝑇𝑥

where 𝑤 = (𝑤0, 𝑤1, ..., 𝑤𝑀 )𝑇 — vector of parameters

Class of hypotheses:
ℋ = {ℎ : ℎ(𝑥) = sign(𝑤0 + 𝑤1𝑥1 + ... + 𝑤𝑀𝑥𝑀 )}

Example:
Normal Bayes classifier with shared covariance matrix
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Probabilistic Classifier

Definition
Probabilistic classifier is a classifier that is able to predict a
probability distribution over a set of classes for the observation
𝑥0, ..., 𝑥𝑀 , rather than only outputting the most likely class that
the observation should belong to

Examples of probabilistic classifiers:
Bayes classifier, logistic regression

Examples of non-probabilistic classifiers:
Support vector machines, LDA

Some non-probabilistic classifiers can be modified to be able to
predict probabilities (e.g., support vector machines)

Logistic regression is a linear probabilistic classifier

Alexander Trofimov Logistic Regression 4 / 32



Binary Classification
Multiclass Classification

Link Function
Odds Ratio
Learning of Logistic Regression

Link Function

Can classification score 𝜙(𝑥,𝑤) be used as a measure of probability
𝑃 (𝑌 = 1|𝑥)?

Intuitively:
The greater 𝜙(𝑥,𝑤) ⇒ the greater probability 𝑃 (𝑌 = 1|𝑥)
The lower 𝜙(𝑥,𝑤) ⇒ the greater probability 𝑃 (𝑌 = −1|𝑥)
𝜙(𝑥,𝑤) = 0 ⇒ 𝑃 (𝑌 = −1|𝑥) = 𝑃 (𝑌 = 1|𝑥) = 0.5

To use the classification score 𝜙(𝑥,𝑤) ∈ (−∞;∞) as a measure of
probability 𝑃 (𝑌 = 1|𝑥) we need to map it monotonically into [0; 1]

Definition
Link function is a function 𝑓 : [0; 1] → R which defines relationship
between probabilities 𝑃 (𝑌 = 1|𝑥) and classification scores 𝜙(𝑥,𝑤):

𝜙(𝑥,𝑤) = 𝑓(𝑃 (𝑌 = 1|𝑥,𝑤))

𝑃 (𝑌 = 1|𝑥,𝑤) = 𝑓−1(𝜙(𝑥,𝑤))
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Logit Function

𝑃 (𝑌 = 1|𝑥,𝑤) = 𝑝, 𝑃 (𝑌 = −1|𝑥,𝑤) = 1 − 𝑝

Logit link function: 𝑓(𝑝) = 𝑙𝑜𝑔𝑖𝑡(𝑝) = ln
𝑝

1 − 𝑝

Inverse logit function: 𝑓−1(𝜙) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜙) =
1

1 + 𝑒−𝜙

Inverse logit function is a logistic function
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Probit Function

𝑃 (𝑌 = 1|𝑥,𝑤) = 𝑝, 𝑃 (𝑌 = −1|𝑥,𝑤) = 1 − 𝑝

Probit link function: 𝑓(𝑝) = 𝑝𝑟𝑜𝑏𝑖𝑡(𝑝) = Φ−1(𝑝)

Inverse probit function: 𝑓−1(𝜙) = Φ(𝜙) =
1√
2𝜋

𝜙∫︁
−∞

exp

(︂
−𝑢2

2

)︂
𝑑𝑢

Inverse probit function is a cumulative distribution function Φ of
the standard normal distribution
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Logit vs Probit Link Functions

Logistic function has slightly flatter tails than the standard normal
CDF, i.e probit curve approaches the axes more quickly than logit
curve

Logit has better interpretation than probit:

𝜙(𝑥,𝑤) = 𝑙𝑜𝑔𝑖𝑡(𝑝) = ln
𝑝

1 − 𝑝
= ln

𝑃 (𝑌 = 1|𝑥,𝑤)

𝑃 (𝑌 = −1|𝑥,𝑤)

The ratio
𝑝

1 − 𝑝
=

𝑃 (𝑌 = 1|𝑥,𝑤)

𝑃 (𝑌 = −1|𝑥,𝑤)
is named odds ratio

For logit link function:
The classification score 𝜙(𝑥,𝑤) can be interpreted as log odds ratio
for object 𝑥 ∈ 𝒳
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Logistic Posteriors

Linear model for classification scores (by assumption):

𝜙(𝑥,𝑤) = 𝑤𝑇𝑥

Logit link function means linear model for log odds ratio:

𝜙(𝑥,𝑤) = 𝑙𝑜𝑔𝑖𝑡(𝑝) = ln
𝑝

1 − 𝑝
= 𝑤𝑇𝑥

Given 𝑥, posterior probability 𝑝 of positive class:

𝑝 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜙(𝑥,𝑤)) =
1

1 + 𝑒−𝜙(𝑥,𝑤)
=

1

1 + 𝑒−𝑤𝑇 𝑥

Inverse logit function is a logistic function: 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = 𝑙𝑜𝑔𝑖𝑡−1

Logit link function means logistic model for posteriors of classes

Have you encountered the logistic posteriors before?
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Odds Ratio for Bayes Classifier

Definitions:

𝑃 (𝑌 = 𝑘|𝑋 = 𝑥) = 𝑝𝑌 (𝑘|𝑥) — posterior probability class 𝑘
𝑃 (𝑌 = 𝑘) = 𝑝𝑌 (𝑘) — prior probability of class 𝑘
𝑃 (𝑋 = 𝑥|𝑌 = 𝑘) = 𝑝𝑋(𝑥|𝑘) — likelihood of class 𝑘
𝑃 (𝑋 = 𝑥) = 𝑝𝑋(𝑥) — evidence of 𝑥
𝑝 = 𝑝𝑌 (+1|𝑥) — posterior probability of positive class
1 − 𝑝 = 𝑝𝑌 (−1|𝑥) — posterior probability of negative class

Bayes’ theorem:

𝑝𝑌 (𝑘|𝑥) =
𝑝𝑋(𝑥|𝑘)𝑝𝑌 (𝑘)

𝑝𝑋(𝑥)

Log odds ratio:

ln
𝑝

1 − 𝑝
= ln

𝑝𝑌 (+1|𝑥)

𝑝𝑌 (−1|𝑥)
= ln

𝑝𝑋(𝑥|+1)𝑝𝑌 (+1)

𝑝𝑋(𝑥|−1)𝑝𝑌 (−1)
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Odds Ratio for Normal Naive Bayes Classifier

For normal naive Bayes classifier with shared covariance
matrix:

𝑝𝑋(𝑥|𝑘) =

𝑀∏︁
𝑗=1

𝑝𝑋𝑗 (𝑥𝑗 |𝑘) =

𝑀∏︁
𝑗=1

1

𝜎𝑗
√

2𝜋
exp

(︃
−

(𝑥𝑗 −𝑚𝑗|𝑘)2

2𝜎2
𝑗

)︃
Log odds ratio:

ln
𝑝

1 − 𝑝
= ln

𝑝𝑌 (+1|𝑥)

𝑝𝑌 (−1|𝑥)
= ln

𝑝𝑋(𝑥|+1)𝑝𝑌 (+1)

𝑝𝑋(𝑥|−1)𝑝𝑌 (−1)

= ln

𝑝𝑌 (+1)
∏︀𝑀

𝑗=1
1

𝜎𝑗

√
2𝜋

exp

(︂
− (𝑥𝑗−𝑚𝑗|+1)

2

2𝜎2
𝑗

)︂
𝑝𝑌 (−1)

∏︀𝑀
𝑗=1

1
𝜎𝑗

√
2𝜋

exp

(︂
− (𝑥𝑗−𝑚𝑗|−1)

2

2𝜎2
𝑗

)︂
= ln

𝑝𝑌 (+1)

𝑝𝑌 (−1)
+

𝑀∑︁
𝑗=1

(𝑥𝑗 −𝑚𝑗|−1)
2 − (𝑥𝑗 −𝑚𝑗|+1)

2

2𝜎2
𝑗

Alexander Trofimov Logistic Regression 11 / 32



Binary Classification
Multiclass Classification

Link Function
Odds Ratio
Learning of Logistic Regression

Odds Ratio for Normal Naive Bayes Classifier
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Odds Ratio for Normal Naive Bayes Classifier

ln
𝑝

1 − 𝑝
= ln

𝑝𝑌 (+1)

𝑝𝑌 (−1)
+

+

𝑀∑︁
𝑗=1

(𝑥2𝑗 − 2𝑥𝑗𝑚𝑗|−1 + 𝑚2
𝑗|−1) − (𝑥2𝑗 − 2𝑥𝑗𝑚𝑗|+1 + 𝑚2

𝑗|+1)

2𝜎2
𝑗

= ln
𝑝𝑌 (+1)

𝑝𝑌 (−1)
+

𝑀∑︁
𝑗=1

2𝑥𝑗(𝑚𝑗|+1 −𝑚𝑗|−1) + (𝑚2
𝑗|−1 −𝑚2

𝑗|+1)

2𝜎2
𝑗

= 𝑤0 +
𝑀∑︁
𝑗=1

𝑤𝑗𝑥𝑗

where 𝑤0 = ln 𝑝𝑌 (+1)
𝑝𝑌 (−1) +

∑︀𝑀
𝑗=1

𝑚2
𝑗|−1

−𝑚2
𝑗|+1

2𝜎2
𝑗

𝑤𝑗 =
𝑚𝑗|+1−𝑚𝑗|−1

𝜎2
𝑗

, 𝑗 = 1, ...,𝑀
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Odds Ratio for Normal Naive Bayes Classifier
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Logistic Regression and Bayesian Classification

Log odds ratio for normal naive Bayes classifier with shared
covariance matrix is linear:

ln
𝑝

1 − 𝑝
= 𝑤0 +

𝑀∑︁
𝑗=1

𝑤𝑗𝑥𝑗 = 𝑤𝑇𝑥

It means that the posteriors are logistic:

𝑝 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑤𝑇𝑥) =
1

1 + 𝑒−𝑤𝑇 𝑥

Under assumptions of normal naive Bayesian classification (the
features 𝑥1, ..., 𝑥𝑀 are independent and normally distributed) with
shared covariance matrix the parameters 𝑤0, ..., 𝑤𝑀 of logistic
regression can be written in closed form

The value 𝑤𝑇𝑥 can be considered as the classification score 𝜙(𝑥)
for object 𝑥 ∈ 𝒳
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Discriminative Approach: Logistic Regression

Logistic model for posteriors:

𝜙(𝑥,𝑤) = 𝑙𝑜𝑔𝑖𝑡(𝑝(𝑥,𝑤)) = ln
𝑝(𝑥,𝑤)

1 − 𝑝(𝑥,𝑤)
= 𝑤𝑇𝑥

𝑝(𝑥,𝑤) = 𝑃 (𝑌 = 1|𝑥,𝑤) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜙(𝑥,𝑤)) =
1

1 + 𝑒−𝑤𝑇 𝑥

How to estimate parameters 𝑤0, ..., 𝑤𝑀 from the data, without any
assumptions about underlying distributions?

Discriminative approach: we model directly classification scores
𝜙(𝑥,𝑤) without modelling the underlying joined distribution
𝑓𝑋𝑌 (𝑥, 𝑦)

Logistic regression realizes discriminative approach: we model
posteriors 𝑝(𝑥,𝑤) explicitly related to classification scores 𝜙(𝑥,𝑤)
via logit link function
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Logistic Model of Classes

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample

Let’s re-label: 𝑦(𝑖) :=
𝑦(𝑖) + 1

2
, 𝑖 = 1, ..., 𝑛, so 𝑦 ∈ {0, 1}

Assume that 𝑦(𝑖) is drawn from Bernoulli distribution:
𝑌𝑖 ∼ 𝐵(1, 𝑝(𝑥(𝑖), 𝑤)), where 𝑝(𝑥(𝑖), 𝑤) = 𝑃 (𝑌𝑖 = 1|𝑥(𝑖), 𝑤)

𝑃 (𝑌𝑖 = 0|𝑥(𝑖), 𝑤) = 1 − 𝑝(𝑥(𝑖), 𝑤)

𝑃 (𝑌𝑖 = 𝑘|𝑥(𝑖), 𝑤) = 𝑝(𝑥(𝑖), 𝑤)𝑘(1 − 𝑝(𝑥(𝑖), 𝑤))1−𝑘

To estimate the vector of parameters 𝑤 the maximum likelihood
method (MLE) is used

The sample likelihood:

ℒ (𝑦(1), ..., 𝑦(𝑛), 𝑤) =

𝑛∏︁
𝑖=1

𝑝(𝑥(𝑖), 𝑤)𝑦
(𝑖)

(1 − 𝑝(𝑥(𝑖), 𝑤))1−𝑦(𝑖) → max
𝑤
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Maximum Likelihood Estimation of Logistic Regression

The sample likelihood:

ℒ (𝑦(1), ..., 𝑦(𝑛), 𝑤) =

𝑛∏︁
𝑖=1

𝑝(𝑥(𝑖), 𝑤)𝑦
(𝑖)

(1 − 𝑝(𝑥(𝑖), 𝑤))1−𝑦(𝑖) → max
𝑤

Negative log-likelihood:

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

(︁
𝑦(𝑖) ln 𝑝(𝑥(𝑖), 𝑤) + (1 − 𝑦(𝑖)) ln(1 − 𝑝(𝑥(𝑖), 𝑤))

)︁
→ min

𝑤

Logistic model for 𝑝(𝑥,𝑤):

𝑝(𝑥,𝑤) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑤𝑇𝑥) =
1

1 + 𝑒−𝑤𝑇 𝑥
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MLE: Optimization Problem

Because of the non-linearity of the sigmoid function, we cannot find
minimum directly and we use gradient descent:

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜂
𝜕𝐸(𝑡)

𝜕𝑤
, 𝑤(0) = 𝑤0

where 𝜕𝐸(𝑡)
𝜕𝑤 is gradient, 𝑡 is iteration, 𝜂 > 0 is step size

Derivative of logistic function:

𝑝 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜙) =
1

1 + 𝑒−𝜙
,

𝑑𝑝

𝑑𝜙
= 𝑝(1 − 𝑝)

Derivatives of negative log-likelihood:

𝜕𝐸

𝜕𝑤𝑗
= −

𝑛∑︁
𝑖=1

(︃
𝑦(𝑖)

𝑝(1 − 𝑝)𝑥
(𝑖)
𝑗

𝑝
− (1 − 𝑦(𝑖))

𝑝(1 − 𝑝)𝑥
(𝑖)
𝑗

1 − 𝑝

)︃

= −
𝑛∑︁

𝑖=1

(︁
𝑦(𝑖)(1 − 𝑝) − (1 − 𝑦(𝑖))𝑝

)︁
𝑥
(𝑖)
𝑗 =

𝑛∑︁
𝑖=1

(︁
𝑝(𝑥(𝑖), 𝑤) − 𝑦(𝑖)

)︁
𝑥
(𝑖)
𝑗

Alexander Trofimov Logistic Regression 17 / 32



Binary Classification
Multiclass Classification

Link Function
Odds Ratio
Learning of Logistic Regression

ERM Principle for Logistic Regression

Assume 𝒴 = {−1, 1}
ERM principle:

𝑅*(𝑤) =

𝑛∑︁
𝑖=1

𝐿
(︁
𝑚
(︁

(𝑥(𝑖), 𝑦(𝑖)), 𝑤
)︁)︁

→ min
𝑤

Logistic loss function:

𝐿(𝑚) = ln
(︀
1 + 𝑒−𝑚

)︀
where

𝑚
(︁

(𝑥(𝑖), 𝑦(𝑖)), 𝑤
)︁

= 𝑦(𝑖)𝜙(𝑥(𝑖)) = 𝑦(𝑖)𝑤𝑇𝑥(𝑖)

is a margin of object 𝑥(𝑖), 𝑖 = 1, ..., 𝑛

Empirical risk:

𝑅*(𝑤) =

𝑛∑︁
𝑖=1

ln
(︁

1 + 𝑒−𝑦(𝑖)𝑤𝑇 𝑥(𝑖)
)︁
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ERM: Optimization Problem

Empirical risk: 𝑅*(𝑤) =
∑︀𝑛

𝑖=1 ln
(︁

1 + 𝑒−𝑦(𝑖)𝑤𝑇 𝑥(𝑖)
)︁

Derivatives:
𝜕𝑅*

𝜕𝑤𝑗
=

𝑛∑︁
𝑖=1

1

1 + 𝑒−𝑦(𝑖)𝑤𝑇 𝑥(𝑖)
𝑒−𝑦(𝑖)𝑤𝑇 𝑥(𝑖)

(−𝑦(𝑖)𝑥
(𝑖)
𝑗 )

For 𝑦(𝑖) = −1:

𝜕𝑅*

𝜕𝑤𝑗
=

𝑛∑︁
𝑖=1

𝑒𝑤
𝑇 𝑥(𝑖)

1 + 𝑒𝑤𝑇 𝑥(𝑖)
𝑥
(𝑖)
𝑗 =

𝑛∑︁
𝑖=1

1

1 + 𝑒−𝑤𝑇 𝑥(𝑖)
𝑥
(𝑖)
𝑗 =

𝑛∑︁
𝑖=1

𝑝(𝑥(𝑖), 𝑤)𝑥
(𝑖)
𝑗

For 𝑦(𝑖) = 1:

𝜕𝑅*

𝜕𝑤𝑗
=

𝑛∑︁
𝑖=1

−𝑒−𝑤𝑇 𝑥(𝑖)

1 + 𝑒−𝑤𝑇 𝑥(𝑖)
𝑥
(𝑖)
𝑗 =

𝑛∑︁
𝑖=1

(︂
1

1 + 𝑒−𝑤𝑇 𝑥(𝑖)
− 1

)︂
𝑥
(𝑖)
𝑗

=

𝑛∑︁
𝑖=1

(𝑝(𝑥(𝑖), 𝑤) − 1)𝑥
(𝑖)
𝑗
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Logistic Regression Learning Problem

Derivatives of empirical risk (𝒴 = {−1, 1}):

𝜕𝑅*

𝜕𝑤𝑗
=

⎧⎪⎪⎨⎪⎪⎩
𝑛∑︀

𝑖=1
𝑝(𝑥(𝑖), 𝑤)𝑥

(𝑖)
𝑗 , 𝑦(𝑖) = −1

𝑛∑︀
𝑖=1

(𝑝(𝑥(𝑖), 𝑤) − 1)𝑥
(𝑖)
𝑗 , 𝑦(𝑖) = 1

Derivatives of negative log-likelihood (𝒴 = {0, 1}):

𝜕𝐸

𝜕𝑤𝑗
=

𝑛∑︁
𝑖=1

(︁
𝑝(𝑥(𝑖), 𝑤) − 𝑦(𝑖)

)︁
𝑥
(𝑖)
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑛∑︀

𝑖=1
𝑝(𝑥(𝑖), 𝑤)𝑥

(𝑖)
𝑗 , 𝑦(𝑖) = 0

𝑛∑︀
𝑖=1

(︀
𝑝(𝑥(𝑖), 𝑤) − 1

)︀
𝑥
(𝑖)
𝑗 , 𝑦(𝑖) = 1

Logistic regression learning problem is empirical risk minimization
with logistic loss function
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Regularized Logistic Regression

If we impose some prior distribution 𝑓𝑊 (𝑤) then we define a
regularizer 𝑟(𝑤) = − ln 𝑓𝑊 (𝑤) (doesn’t depend on data) (see
previous topics)

Regularized empirical risk:

𝑅′(ℎ) = 𝑅*(ℎ) + 𝑟(𝑤)

The assumption about independent and normally distributed
parameters with zero mean and variance 𝜎2 leads to 𝐿2-regularizer:

𝑟(𝑤) = − ln 𝑓𝑊 (𝑤) =
1

2𝜎2

𝑀∑︁
𝑗=1

𝑤2
𝑗 + 𝑐𝑜𝑛𝑠𝑡

Derivatives of regularized empirical risk (𝒴 = {−1, 1}):
𝜕𝑅′

𝜕𝑤𝑗
=

𝜕𝑅*

𝜕𝑤𝑗
+

1

𝜎2
𝑤𝑗 , 𝑗 = 1, ...,𝑀
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Problem Statement

Given:
𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample
(𝑥(𝑖), 𝑦(𝑖)) ∈ 𝒳 × 𝒴 , 𝑖 = 1, ..., 𝑛

𝒳 = R𝑀 — feature space, 𝒴 = {1, ...,𝐾} — class labels

Assumption:

Class of hypotheses ℋ =

{︂
ℎ : ℎ(𝑥) = arg max

𝑘=1,𝐾
𝜙(𝑥,𝑤𝑘)

}︂
,

where 𝜙(𝑥,𝑤𝑘) ∈ R — classification score for object 𝑥 with respect
to class 𝑘, 𝑘 = 1, ...,𝐾, 𝑥 = (𝑥0, 𝑥1, ..., 𝑥𝑀 )𝑇 ∈ R𝑀+1, 𝑥0 ≡ 1

𝑤𝑘 ∈ R𝑀+1 — vector of parameters associated with 𝑘-th class,
𝑘 = 1, ...,𝐾

Classifications scores with respect to each class are linear:

𝜙(𝑥,𝑤𝑘) = 𝑤0𝑘 + 𝑤1𝑘𝑥1 + ... + 𝑤𝑀𝑘𝑥𝑀 = 𝑤𝑇
𝑘 𝑥
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Relation to Posterior Probabilities

Intuitively:
The greater 𝜙(𝑥,𝑤𝑘) ⇒ the greater probability 𝑃 (𝑌 = 𝑘|𝑥)

𝜙(𝑥,𝑤𝑘*) = max
𝑘=1,𝐾

𝜙(𝑥,𝑤𝑘) ⇒ 𝑃 (𝑌 = 𝑘*) = max
𝑘=1,𝐾

𝑃 (𝑌 = 𝑘|𝑥)

To use the classification scores 𝜙(𝑥,𝑤1), ..., 𝜙(𝑥,𝑤𝐾) ∈ (−∞;∞)
as measures of probabilities 𝑃 (𝑌 = 1|𝑥), ..., 𝑃 (𝑌 = 𝐾|𝑥) we need

to map them monotonically into [0; 1] such as
𝐾∑︀
𝑘=1

𝑃 (𝑌 = 𝑘|𝑥) = 1

In multiclass logistic regression to perform this mapping the
softmax function is used:

(𝑝1, ..., 𝑝𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙(𝑥,𝑤1), ..., 𝜙(𝑥,𝑤𝐾))

𝑝𝑘 = 𝑃 (𝑌 = 𝑘|𝑥), 𝜙(𝑥,𝑤𝑘) = 𝑤𝑇
𝑘 𝑥, 𝑘 = 1, ...,𝐾
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Softmax Function

Definition

Softmax function is a function R𝐾 → [0; 1]𝐾 defined as:

(𝑝1, ..., 𝑝𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙1, ..., 𝜙𝐾) ⇔ 𝑝𝑘 =
𝑒𝜙𝑘

𝐾∑︀
𝑖=1

𝑒𝜙𝑖

, 𝑘 = 1, ...,𝐾

For 𝐾 = 2 and 𝜙1 = 𝜙
2 , 𝜙2 = −𝜙

2 :

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(︁𝜙

2
,−𝜙

2

)︁
=

(︃
𝑒𝜙/2

𝑒𝜙/2 + 𝑒−𝜙/2
,

𝑒−𝜙/2

𝑒𝜙/2 + 𝑒−𝜙/2

)︃

=

(︂
1

1 + 𝑒−𝜙
,

𝑒−𝜙

1 + 𝑒−𝜙

)︂
= (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜙), 1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜙)) = (𝑝, 1 − 𝑝)

Softmax function is a generalization of the sigmoid (logistic)
function for 𝐾 > 2
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Softmax Function. Illustration

Hard max:
(𝑝1, 𝑝2) = arg max(𝜙1, 𝜙2)
𝜙1 > 𝜙2 ⇒ (1, 0)
𝜙1 < 𝜙2 ⇒ (0, 1)

Softmax:
(𝑝1, 𝑝2) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙1, 𝜙2)
𝜙1 > 𝜙2 ⇒ (𝑝1, 𝑝2), 0 ≥ 𝑝2 > 𝑝1 ≥ 1
𝜙1 < 𝜙2 ⇒ (𝑝1, 𝑝2), 0 ≥ 𝑝1 > 𝑝2 ≥ 1

Softmax is a smooth approximation of indicator max function
Alexander Trofimov Logistic Regression 25 / 32



Binary Classification
Multiclass Classification

Softmax Function
Learning of Logistic Regression

Reference Class

(𝑝1, ..., 𝑝𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙1, ..., 𝜙𝐾), 𝜙𝑘 = 𝑤𝑇
𝑘 𝑥, 𝑘 = 1, ...,𝐾

As soon as
𝐾∑︀
𝑘=1

𝑝𝑘 = 1, 𝑝𝐾 is not independent: 𝑝𝐾 = 1 −
𝐾−1∑︀
𝑘=1

𝑝𝑘

It means that it is not necessary to learn vector of parameters for
one of classes, e.g. 𝑤𝐾 , it can be defined as reference

To prove it, add a constant vector 𝐶 to all vectors 𝑤1, ..., 𝑤𝐾 :

𝑒(𝑤𝑘+𝐶)𝑇 𝑥

𝐾∑︀
𝑙=1

𝑒(𝑤𝑙+𝐶)𝑇 𝑥

=
𝑒𝑤

𝑇
𝑘 𝑥𝑒𝐶

𝑇 𝑥

𝐾∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥𝑒𝐶𝑇 𝑥

=
𝑒𝑤

𝑇
𝑘 𝑥𝑒𝐶

𝑇 𝑥

𝑒𝐶𝑇 𝑥
𝐾∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥

=
𝑒𝑤

𝑇
𝑘 𝑥

𝐾∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥

The result of softmax function remains the same
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Posterior Probabilities

Let 𝐶 = −𝑤𝐾 : 𝑝𝑘 =
𝑒(𝑤𝑘−𝑤𝐾)𝑇 𝑥

𝐾∑︀
𝑙=1

𝑒(𝑤𝑙−𝑤𝐾)𝑇 𝑥

, 𝑘 = 1, ...,𝐾

Define:
𝑤1 := 𝑤1 − 𝑤𝐾

...

𝑤𝐾−1 := 𝑤𝐾−1 − 𝑤𝐾

𝑤𝐾 := 0

We need only 𝐾 − 1 vectors of parameters to learn

Posterior probabilities:

𝑝1 =
𝑒𝑤

𝑇
1 𝑥

1 +
𝐾−1∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥

, ..., 𝑝𝐾−1 =
𝑒𝑤

𝑇
𝐾−1𝑥

1 +
𝐾−1∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥

, 𝑝𝐾 =
1

1 +
𝐾−1∑︀
𝑙=1

𝑒𝑤
𝑇
𝑙 𝑥
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Logistic Model of Classes

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample

Assume that 𝑦(𝑖) is drawn from multinomial distribution:

𝑌𝑖 ∼ 𝑀𝑢𝑙𝑡(1, 𝑝1(𝑥
(𝑖), 𝑤), ..., 𝑝𝐾(𝑥(𝑖), 𝑤))

where 𝑝𝑘(𝑥(𝑖), 𝑤) = 𝑃 (𝑌𝑖 = 𝑘|𝑥(𝑖), 𝑤)

Let’s re-label: 𝑦(𝑖) :=
(︁
𝑦
(𝑖)
1 , ..., 𝑦

(𝑖)
𝐾

)︁
, 𝑦

(𝑖)
𝑘 =

{︃
1, 𝑦(𝑖) = 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

So 𝑦(𝑖) is a binary vector that contains one 1 at 𝑘-th position, other
elements are 0, 𝑖 = 1, ..., 𝑛

Probabilities:

𝑃 (𝑌𝑖 = 𝑘|𝑥(𝑖), 𝑤) = 𝑝𝑘(𝑥(𝑖), 𝑤) =

𝐾∏︁
𝑙=1

(︁
𝑝𝑙(𝑥

(𝑖), 𝑤)
)︁𝑦(𝑖)𝑙
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Maximum Likelihood Estimation of Logistic Regression

To estimate the vector of parameters 𝑤 the maximum likelihood
method (MLE) is used

The sample likelihood:

ℒ (𝑦(1), ..., 𝑦(𝑛), 𝑤) =

𝑛∏︁
𝑖=1

𝐾∏︁
𝑙=1

(︁
𝑝𝑙(𝑥

(𝑖), 𝑤)
)︁𝑦(𝑖)𝑙 → max

𝑤

Negative log-likelihood:

𝐸(𝑤) = −
𝑛∑︁

𝑖=1

𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙 ln 𝑝𝑙(𝑥

(𝑖), 𝑤) → min
𝑤

Logistic model for 𝑝(𝑥,𝑤):

(𝑝1(𝑥,𝑤), ..., 𝑝𝐾(𝑥,𝑤)) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇
1 𝑥, ..., 𝑤

𝑇
𝐾−1𝑥, 0)

where 𝑤 = (𝑤𝑇
1 , ..., 𝑤

𝑇
𝐾−1) is a (𝐾 − 1) *𝑀 matrix of parameters
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MLE: Optimization Problem

Because of the non-linearity of the sigmoid function, we cannot find
minimum directly and we use gradient descent:

𝑤𝑘(𝑡 + 1) = 𝑤𝑘(𝑡) − 𝜂
𝜕𝐸(𝑡)

𝜕𝑤𝑘
, 𝑤𝑘(0) = 𝑤0

𝑘, 𝑘 = 1, ...,𝐾 − 1

where 𝜕𝐸(𝑡)
𝜕𝑤𝑘

is gradient, 𝑡 is iteration, 𝜂 > 0 is step size

Derivatives of softmax function:

(𝑝1, ..., 𝑝𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙1, ..., 𝜙𝐾),
𝑑𝑝𝑙
𝑑𝜙𝑘

= 𝑝𝑙(𝛿𝑘𝑙 − 𝑝𝑘)

where 𝛿𝑘𝑙 =

{︃
1, 𝑘 = 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
is the Kronecker delta
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MLE: Optimization Problem

Derivatives of negative log-likelihood:

𝜕𝐸

𝜕𝑤𝑘𝑗
= − 𝜕

𝜕𝑤𝑘𝑗

𝑛∑︁
𝑖=1

𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙 ln 𝑝𝑙(𝑥

(𝑖), 𝑤)

= −
𝑛∑︁

𝑖=1

𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙

𝑝𝑙(𝑥
(𝑖), 𝑤)(𝛿𝑘𝑙 − 𝑝𝑘(𝑥(𝑖), 𝑤))

𝑝𝑙(𝑥(𝑖), 𝑤)
𝑥
(𝑖)
𝑗

= −
𝑛∑︁

𝑖=1

𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙 (𝛿𝑘𝑙 − 𝑝𝑘(𝑥(𝑖), 𝑤))𝑥

(𝑖)
𝑗

= −
𝑛∑︁

𝑖=1

(︃
𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙 𝛿𝑘𝑙 − 𝑝𝑘(𝑥(𝑖), 𝑤)

𝐾∑︁
𝑙=1

𝑦
(𝑖)
𝑙

)︃
𝑥
(𝑖)
𝑗

= −
𝑛∑︁

𝑖=1

(︁
𝑦
(𝑖)
𝑘 − 𝑝𝑘(𝑥(𝑖), 𝑤)

)︁
𝑥
(𝑖)
𝑗 , 𝑘 = 1, ...,𝐾 − 1, 𝑗 = 1, ...,𝑀
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Logistic Regression vs Bayesian Classification

Logistic Regression:
Assumes the model for posterior probabilities 𝑝𝑌 (𝑦|𝑥) of
classes and trains its parameters
Can still be used when the class-conditional densities are
non-normal or when they are not unimodal as long as classes
are linearly separable

Parametric Bayesian classification:
Assumes the model for conditional distributions of features
𝑝𝑋(𝑥|𝑦) and class priors 𝑝𝑌 (𝑦), the posterior probabilities are
derived using Bayes’ rule
The assumptions about underlying distributions can be wrong
that leads to classification errors

When data are normally distributed, the logistic discriminant has a
comparable error rate to the parametric, normal-based linear
discriminant
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