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Binary Classification
Multiclass Classification

Classification. Problem Statement

Given:
𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample

𝒴 = {1, ...,𝐾} — class labels

𝑓1(𝑥), ..., 𝑓𝑀 (𝑥) — features of object 𝑥 ∈ 𝒳

To build learning algorithm we must specify:
Class of hypotheses ℋ = {ℎ : ℎ(𝑥), ℎ(𝑥) ∈ 𝒴 }
Loss function 𝐿(ℎ, (𝑥, 𝑦)) ∈ R+, ℎ ∈ ℋ , 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴

Find out:
Construct hypothesis ℎ ∈ ℋ that minimizes empirical risk over
train sample: 𝑅*(ℎ) → min

ℎ∈ℋ

𝐾 = 2 ⇒ binary classification problem
𝐾 > 2 ⇒ multiclass classification problem
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Binary Classification Problem

Let’s denote class labels as –1 (negative class) and +1 (positive
class): 𝒴 = {−1, 1}

Suppose that:
Class of hypotheses ℋ = {ℎ : ℎ(𝑥) = sign𝜙(𝑥,𝑤)},

where 𝜙(𝑥,𝑤) ∈ R — classification score for object 𝑥 ∈ 𝒳

𝑤 ∈ R𝐿 — vector of parameters

Definition
Classification margin 𝑚((𝑥, 𝑦), 𝑤) at 𝑥 ∈ 𝒳 is defined as product

𝑚((𝑥, 𝑦), 𝑤) = 𝑦𝜙(𝑥,𝑤)

Positive values of 𝑚((𝑥, 𝑦), 𝑤) indicate correct classification
Negative values — incorrect classification
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Classification Loss Functions

Definition
Classification loss function 𝐿(ℎ, (𝑥, 𝑦)) ∈ R+ at 𝑥 ∈ 𝒳 is some
measure of predictive inaccuracy of classification model ℎ ∈ ℋ at
𝑥 ∈ 𝒳

When comparing the same type of loss among many classification
models, lower loss indicates a better classification model

Let’s define loss as a function of margin 𝐿(𝑚):
𝑚 > 0 ⇒ correct classification, do not have to contribute much to
the loss
𝑚 < 0 ⇒ incorrect classification, have to contribute to the loss
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Types of Loss Functions

0-1 loss

𝐿(𝑚) =

{︃
1, 𝑚 ≤ 0,

0, 𝑚 > 0.

Robust to outliers but hard to optimize
Hinge loss

𝐿(𝑚) = max(0, 1 −𝑚)

Equals to 0-1 loss when 𝑚 ≥ 1, wrong classified points
penalized in a linear fashion, not smooth and cannot be used
with gradient descent methods
Logistic loss

𝐿(𝑚) = ln
(︀
1 + 𝑒−𝑚

)︀
Does not assign zero penalty to any points, sensitive to outliers
in the data, smooth, gradient descent methods can be utilized
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Types of Loss Functions

Exponential loss
𝐿(𝑚) = 𝑒−𝑚

Does not assign zero penalty to any points, strong penalty for
wrong classified points with high score
Quadratic loss

𝐿(𝑚) = (1 −𝑚)2

Equals to 0-1 loss when 𝑚 = 0 and 𝑚 = 1, simple, smooth,
tends to penalize outliers excessively, appropriate if 𝜙(𝑥)
doesn’t yield high values, correctly classified points with high
score will be penalized

Truncated quadratic loss: 𝐿(𝑚) =

{︃
(1 −𝑚)2, 𝑚 ≤ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Loss Functions. Plots

loss vs margin
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Statistical View

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — sample drawn from joint
probability distribution 𝑓𝑋𝑌 (𝑥, 𝑦)

Suppose that 𝑓𝑋𝑌 (𝑥, 𝑦) is parametrized by vector 𝑤 ∈ R𝐿:
𝑓𝑋𝑌 (𝑥, 𝑦|𝑤)

To estimate 𝑤 given 𝒟 we use method of maximum likelihood

Likelihood ℒ (𝒟 , 𝑤) =
∏︀𝑛

𝑖=1 𝑓𝑋𝑌

(︀
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︀
Maximum likelihood estimator (MLE) of 𝑤 is a solution of
optimization problem:

ℒ (𝒟 , 𝑤) → max
𝑤

Log-likelihood:

ln ℒ (𝒟 , 𝑤) =
∑︀𝑛

𝑖=1 ln 𝑓𝑋𝑌

(︀
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︀
→ max

𝑤
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MLE and ERM Principle

ERM principle: 𝑅*(ℎ) =
∑︀𝑛

𝑖=1 𝐿
(︀
𝑚

(︀
(𝑥(𝑖), 𝑦(𝑖)), 𝑤

)︀)︀
→ min

𝑤

MLE: − ln ℒ (𝒟 , 𝑤) = −
∑︀𝑛

𝑖=1 ln 𝑓𝑋𝑌

(︀
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︀
→ min

𝑤

These problems are equivalent if

− ln 𝑓𝑋𝑌

(︁
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︁
= 𝐿

(︁
𝑚

(︁
(𝑥(𝑖), 𝑦(𝑖)), 𝑤

)︁)︁
The loss function is related to probabilistic model of the data:

we define 𝐿(𝑚) ⇒ we impose some probabilistic model in 𝒳 × 𝒴

we define 𝑓𝑋𝑌 (𝑥, 𝑦|𝑤) ⇒ we impose loss function 𝐿(𝑚)
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Bayes’ theorem

Suppose that vector 𝑤 ∈ R𝐿 is a random vector drawn from
distribution 𝑓𝑊 (𝑤)

Then joint probability distribution of random vector (𝑋,𝑌,𝑊 ):

𝑓𝑋𝑌𝑊 (𝑥, 𝑦, 𝑤) = 𝑓𝑋𝑌 (𝑥, 𝑦|𝑤)𝑓𝑊 (𝑤)

Bayes’ theorem:

𝑓𝑊 (𝑤|𝑥, 𝑦) = 𝑓𝑋𝑌 (𝑥,𝑦|𝑤)𝑓𝑊 (𝑤)
𝑓𝑋𝑌 (𝑥,𝑦)

𝑓𝑊 (𝑤) — prior distribution of parameter 𝑊
𝑓𝑊 (𝑤|𝑥, 𝑦) — posterior distribution of 𝑊 given the data (𝑥, 𝑦)
𝑓𝑋𝑌 (𝑥, 𝑦|𝑤) — likelihood (conditional distribution of (𝑋,𝑌 ))
𝑓𝑋𝑌 (𝑥, 𝑦) — evidence (marginal distribution of (𝑋,𝑌 ))

Bayes’ theorem: 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑝𝑟𝑖𝑜𝑟
𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
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Bayesian Estimator

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — sample drawn from joint
probability distribution 𝑓𝑋𝑌 (𝑥, 𝑦)

Most probable bayesian estimator of parameters 𝑤 ∈ R𝐿 is such
that maximizes 𝑓𝑊 (𝑤|𝒟):

𝑓𝑊 (𝑤|𝒟) =
ℒ (𝒟 |𝑤)𝑓𝑊 (𝑤)

ℒ (𝒟)
→ max

𝑤

ℒ (𝒟) is a joint distribution of all samples given size 𝑛, doesn’t
depend on 𝑤, can be skipped from optimization:

ℒ (𝒟 |𝑤)𝑓𝑊 (𝑤) → max
𝑤

For uniform prior distribution 𝑓𝑊 (𝑤) = 𝑐𝑜𝑛𝑠𝑡:

ℒ (𝒟 |𝑤) → max
𝑤

Bayesian estimator coincides with the maximum likelihood
estimator for a uniform prior
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Bayesian Estimator and ERM Principle

Assume the prior distribution 𝑓𝑊 (𝑤) of parameters 𝑤 ∈ R𝐿 to be
non-uniform

The optimization problem

𝑓𝑊 (𝑤|𝒟) = ℒ (𝒟 |𝑤)𝑓𝑊 (𝑤) → max
𝑤

is equivalent to

− ln 𝑓𝑊 (𝑤|𝒟) = − ln ℒ (𝒟 |𝑤) − ln 𝑓𝑊 (𝑤) → min
𝑤

− ln 𝑓𝑊 (𝑤|𝒟) = −
∑︀𝑛

𝑖=1 ln 𝑓𝑋𝑌

(︀
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︀
− ln 𝑓𝑊 (𝑤) → min

𝑤

ERM principle:

𝑅*(ℎ) =
∑︀𝑛

𝑖=1 𝐿
(︀
𝑚

(︀
(𝑥(𝑖), 𝑦(𝑖)), 𝑤

)︀)︀
→ min

𝑤
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Regularized Empirical Risk

Regularized empirical risk:

𝑅′(ℎ) = 𝑅*(ℎ) + 𝑟(𝑤)

𝑟(𝑤) — regularizer (doesn’t depend on data)

Assume

− ln 𝑓𝑋𝑌

(︁
𝑥(𝑖), 𝑦(𝑖)|𝑤

)︁
= 𝐿

(︁
𝑚

(︁
(𝑥(𝑖), 𝑦(𝑖)), 𝑤

)︁)︁
− ln 𝑓𝑊 (𝑤) = 𝑟(𝑤)

then the Bayesian estimation problem and the regularized empirical
risk minimization problem are equivalent

we define 𝑟(𝑤) ⇔ we impose some prior distribution 𝑓𝑊 (𝑤)
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Gaussian Prior

𝑊1, ...,𝑊𝐿 — independent and identically distributed (i.i.d.)
random variables, 𝑊𝑖 ∼ 𝑁(0, 𝜎), 𝑖 = 1, ..., 𝐿:

𝑓𝑊𝑖(𝑤) = 1
𝜎
√
2𝜋

exp
(︁
− 𝑤2

2𝜎2

)︁
Joint probability distribution:

𝑓𝑊 (𝑤) = 1
(𝜎

√
2𝜋)𝐿

exp
(︁
−𝑤2

1+...+𝑤2
𝐿

2𝜎2

)︁
𝐿2-regularizer:

𝑟(𝑤) = − ln 𝑓𝑊 (𝑤) =
1

2𝜎2

𝐿∑︁
𝑖=1

𝑤2
𝑖 + 𝑐𝑜𝑛𝑠𝑡

Advantage: smooth, simple
Disadvantage: tends to make all parameters close to zero
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Laplacian Prior

𝑊1, ...,𝑊𝐿 — i.i.d. random variables, 𝑊𝑖 ∼ 𝐿(0, 𝑏), 𝑖 = 1, ..., 𝐿

𝑓𝑊𝑖(𝑤) = 1
2𝑏 exp

(︁
− |𝑤|

𝑏

)︁
Joint probability distribution:

𝑓𝑊 (𝑤) = 1
(2𝑏)𝐿

exp
(︁
− |𝑤1|+...+|𝑤𝐿|

𝑏

)︁
𝐿1-regularizer:

𝑟(𝑤) = − ln 𝑓𝑊 (𝑤) =
1

2𝑏

𝐿∑︁
𝑖=1

|𝑤𝑖| + 𝑐𝑜𝑛𝑠𝑡

Advantage: towering peak and heavy tails
Disadvantage: not smooth
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Gaussian vs Laplacian Priors

Gaussian

Euclidean metric

Laplace

City-block metric
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Regularized ERM. Illustration

Regularized ERM: 𝑅′(ℎ) = 𝑅*(ℎ) + 𝑟(𝑤) → min
𝑤
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Supervised Learning Methods

Regression Methods

Loss function Regularizer Method
Squared loss — Ordinary regression
Squared loss 𝐿2 Ridge regression
Squared loss 𝐿1 LASSO regression
Squared loss 𝐿2 + 𝐿1 Elastic net regression
Hinge loss 𝐿2 SVM regression

Classification Methods
Loss function Regularizer Method

0-1 loss — Bayesian classifier
Hinge loss 𝐿2 Standard SVM
Hinge loss 𝐿1 LASSO SVM
Logistic loss 𝐿2 Logistic regression

Exponential loss — AdaBoost classifier
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Estimation of Classification Error

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡 — available data
ℎ ∈ ℋ — model trained on 𝒟𝑇

How to estimate the error of the model ℎ?

Empirical risk 𝑅*
𝑇𝑠𝑡(ℎ) over test set is not sufficient to estimate the

error of the model ℎ!

The reason is discrete character of responses

Example
Suppose that population consists of 90% positive cases and 10%
negative cases

The model ℎ(𝑥) ≡ 1 is correct for 90% cases!
But... is ℎ(𝑥) a good model?
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Measures of Classification Performance

We need additional metrics to evaluate classification performance

Confusion matrix based measures
— Measure the performance of given classifier ℎ
— Deal with different types of binary classification outcomes
— Derived from confusion matrix
Model-wide measures
— Measure the performance of parametrized set of classifiers
{ℎ𝑏, 𝑏 ∈ R}, not of given classifier ℎ
— Calculate multiple confusion matrix based measures for
many 𝑏 ∈ R
— Measure the separability of trained classification scores
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Confusion Matrix

Four outcomes of
classification:

TP — True Positive
FP — False Positive
TN — True Negative
FN — False Negative

TP — actually positive, are correctly included in the positive class
FP — actually negative, are incorrectly included in the positive class
TN — actually negative, are correctly included in the negative class
FN — actually positive, are incorrectly included in the negative class
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Confusion Matrix. Illustration
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Error Rate

Error rate (ERR) is the number of all incorrect predictions divided
by the total number of cases:

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

The best error rate is 0.0, the worst is 1.0
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Accuracy

Accuracy (ACC) is the number of all correct predictions divided by
the total number of cases:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
= 1 − 𝐸𝑅𝑅

The best accuracy is 1.0, the worst is 0.0
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Sensitivity (Recall)

Sensitivity (SENS) is the number of correct positive predictions
divided by the total number of positives:

𝑆𝐸𝑁𝑆 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

It is also called recall (REC) or true positive rate (TPR)

The best sensitivity is 1.0, the worst is 0.0

Alexander Trofimov Supervised Learning. Classification 25 / 69



Binary Classification
Multiclass Classification

Loss function and Empirical Risk
Confusion Matrix Based Performance Measures
Model-Wide Performance Measures

Specificity

Specificity (SPEC) is the number of correct negative predictions
divided by the total number of negatives:

𝑆𝑃𝐸𝐶 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

It is also called true negative rate (TNR)

The best specificity is 1.0, the worst is 0.0
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Precision

Precision (PREC) is the number of correct positive predictions
divided by the total number of positive predictions:

𝑃𝑅𝐸𝐶 = 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

It is also called positive predictive value (PPV)

The best precision is 1.0, whereas the worst is 0.0

Alexander Trofimov Supervised Learning. Classification 27 / 69



Binary Classification
Multiclass Classification

Loss function and Empirical Risk
Confusion Matrix Based Performance Measures
Model-Wide Performance Measures

Fall-out

Fall-out (FALL) is the number of incorrect positive predictions
divided by the total number of negatives:

𝐹𝐴𝐿𝐿 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
= 1 − 𝑆𝑃𝐸𝐶

It is also called false positive rate (FPR)

The best fall-out is 0.0, the worst is 1.0
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F-score

F-score is a harmonic mean of precision and recall:

𝐹𝛽 =
𝑎 + 𝑏

𝑎
𝑅𝐸𝐶 + 𝑏

𝑃𝑅𝐸𝐶

=
(1 + 𝛽2)(𝑃𝑅𝐸𝐶 ·𝑅𝐸𝐶)

𝛽2 · 𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶

where 𝛽2 = 𝑎
𝑏 — weight of precision in harmonic mean

Parameter 𝛽 is commonly 0.5, 1, or 2

For example, 𝛽 = 1:

𝐹1 =
2 · 𝑃𝑅𝐸𝐶 ·𝑅𝐸𝐶

𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶

The best F-score is 1.0, the worst is 0.0
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Cohen’s Kappa

Cohen’s kappa is a performance measure of given classifier over a
random classifier:

𝜅 =
𝐴𝐶𝐶 −𝐴𝐶𝐶0

1 −𝐴𝐶𝐶0
= 1 − 1 −𝐴𝐶𝐶

1 −𝐴𝐶𝐶0

where 𝐴𝐶𝐶0 is a probability of concordance between given
classifier ℎ and random classifier 𝑦0:

𝐴𝐶𝐶0 = 𝑃 (ℎ = −1)𝑃 (𝑦0 = −1) + 𝑃 (ℎ = 1)𝑃 (𝑦0 = 1)

where
𝑃 (ℎ = −1) = 𝑇𝑁+𝐹𝑁

𝑃+𝑁 𝑃 (ℎ = 1) = 𝑇𝑃+𝐹𝑃
𝑃+𝑁

𝑃 (𝑦0 = −1) = 𝑇𝑁+𝐹𝑃
𝑃+𝑁 = 𝑁

𝑃+𝑁 𝑃 (𝑦0 = 1) = 𝑇𝑃+𝐹𝑁
𝑃+𝑁 = 𝑃

𝑃+𝑁

And 𝐴𝐶𝐶 (accuracy) is a probability of concordance between given
classifier ℎ and perfect classifier 𝑦

The best Cohen’s kappa is 1.0, the worst is 0.0 and below
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Confusion Matrix Based Measures

Error rate
Accuracy
Sensitivity (Recall, True positive rate)
Specificity (True negative rate)
Precision (Positive predictive value)
Fall-out (False positive rate)
False discovery rate (FDR): 𝐹𝐷𝑅 = 1 − 𝑃𝑃𝑉

False negative rate (FNR): 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅

F-score
Cohen’s kappa
...
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Threshold Classifiers

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample

Class of hypotheses ℋ = {ℎ : ℎ(𝑥) = sign𝜙(𝑥,𝑤)},

where 𝜙(𝑥,𝑤) ∈ R — classification score for object 𝑥

𝑤 ∈ R𝐿 — vector of parameters

Suppose that ℎ ∈ ℋ is some trained classifier, 𝜙(𝑥(𝑖), 𝑤) is the
classification score for object 𝑥(𝑖), 𝑖 = 1, ..., 𝑛

Let’s introduce a set of classifiers {ℎ𝑏, 𝑏 ∈ R}:

ℎ𝑏(𝑥) = sign(𝜙(𝑥,𝑤) − 𝑏)

where 𝑏 is a threshold

The given classifier ℎ is when threshold is equal to 0: ℎ = ℎ0
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ROC Curve

Each classifier ℎ𝑏, 𝑏 ∈ R, has the specificity and sensitivity
calculated over sample 𝒟 : 𝑆𝐸𝑁𝑆(𝑏), 𝑆𝑃𝐸𝐶(𝑏)

Definition
Receiver operating characteristic (ROC) curve of classifier ℎ is a
graphical plot of its sensitivity (true positive rate) against the
1-specificity (false positive rate) at various thresholds 𝑏 ∈ R

In practice, the specificity and sensitivity can be calculated only for
the thresholds 𝑏(𝑖), 𝑖 = 2, ..., 𝑛:

𝑏(𝑖) =
1

2

(︁
𝜙(𝑥(𝑖−1), 𝑤) + 𝜙(𝑥(𝑖), 𝑤)

)︁
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ROC Curve. Illustration

1 − 𝑆𝑃𝐸𝐶 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

𝑆𝐸𝑁𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Perfect classifier:

1 − 𝑆𝑃𝐸𝐶 = 0
𝑆𝐸𝑁𝑆 = 1
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ROC Curve. Random and Perfect Classification

A ROC curve represents
non-separable classes

A ROC curve represents
threshold-separable classes
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Area Under ROC Curve

Classifier A clearly outperforms
classifier B

AUC can be calculated as sum of
areas 1,2,3
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AUC Calculation

AUC is not a measure of given classifier ℎ but a measure of
threshold separability of classification scores

𝜙(𝑥(1), 𝑤), ..., 𝜙(𝑥(𝑛), 𝑤),

i.e. is a measure of the map 𝜙(𝑥,𝑤) quality

AUC can be calculated using ROC curve or analytically*:

𝐴𝑈𝐶 =

𝑁+𝑃∑︀
𝑖=1

𝑁+𝑃∑︀
𝑗=1

[︀
𝜙(𝑥(𝑖)) > 𝜙(𝑥(𝑗))&(𝑦(𝑖) = 1)&(𝑦(𝑗) = −1)

]︀
𝑁𝑃

*Mason, S. J., Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and
relative operating levels (ROL) curves: Statistical significance and interpretation. Quarterly Journal of
the Royal Meteorological Society, 128(584), 2145-2166
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AUC and Mann-Whitney’s Statistic

AUC is an estimate of the probability that the classifier ℎ ranks a
randomly chosen positive case higher than a randomly chosen
negative case

Mann-Whitney’s statistics:

𝑈𝑃 = 𝑅𝑃 − 𝑃 (𝑃+1)
2 , 𝑈𝑁 = 𝑅𝑁 − 𝑁(𝑁+1)

2

𝑅𝑃 + 𝑅𝑁 = 1 + ... + (𝑁 + 𝑃 ) = (𝑁+𝑃 )(𝑁+𝑃+1)
2

𝑈𝑃 + 𝑈𝑁 = 𝑁𝑃

where 𝑅𝑃 is the sum of the ranks related to positive class in
sample 𝜙(𝑥(1), 𝑤), ..., 𝜙(𝑥(𝑛), 𝑤)

It can be shown that
𝐴𝑈𝐶 =

𝑈𝑃

𝑁𝑃

So, AUC is related to well-known U-statistic. It allows us to
calculate confidence intervals and perform statistical tests for AUC
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Precision-Recall Curve. Illustration

𝑆𝐸𝑁𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Perfect classifier:

𝑆𝐸𝑁𝑆 = 1
𝑃𝑅𝐸𝐶 = 1
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PR Curve. Random and Perfect Classification

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑃

𝑃 + 𝑁

A PRC represents
non-separable classes

A PRC represents
threshold-separable classes
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Area Under PR Curve

Classifier A clearly outperforms
classifier B

AUC can be calculated as sum of
areas 1,2,3
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ROC AUC and PR AUC

Points in ROC space and PR space have a one-to-one relationship

ROC shows the same AUC for classifiers A (0.61) and B (0.61)
PRC shows different PR AUC for A (0.62) and B (0.53)
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ROC vs PRC

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
#𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠 = #𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
#𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑆𝑝𝑒𝑐 = #𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
#𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

PRC is more informative when dealing with “needle-in-haystack”
type problems or problems where the positive class is more
important than the negative class

Other properties:
Linear interpolation in ROC space leads to non-linear
interpolation in PR space
Algorithms that optimize ROC AUC are not guaranteed to
optimize PR AUC
A curve dominates in ROC space iff it dominates in PR space
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ROC vs PRC. Example

Information retrieval problem:
We want to find a set of 100 relevant documents out of a list of 1
million possibilities based on some query. Let’s say we’ve got two
algorithms we want to compare with the following performance:
Algorithm 1: 100 retrieved documents, 90 relevant
Algorithm 2: 2000 retrieved documents, 90 relevant

In ROC space:
Algorithm 1: 𝑇𝑃𝑅 = 0.9, 𝐹𝑃𝑅 = 0.00001
Algorithm 2: 𝑇𝑃𝑅 = 0.9, 𝐹𝑃𝑅 = 1910/106 = 0.00191
∆𝐹𝑃𝑅 = 0.00191 − 0.00001 = 0.0019 ≈ 0

In PR space:
Algorithm 1: 𝑅𝐸𝐶 = 𝑇𝑃𝑅 = 0.9, 𝑃𝑅𝐸𝐶 = 0.9
Algorithm 2: 𝑅𝐸𝐶 = 𝑇𝑃𝑅 = 0.9, 𝑃𝑅𝐸𝐶 = 90/2000 = 0.045
∆𝑃𝑅𝐸𝐶 = 0.9 − 0.045 = 0.855
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Threshold Criteria

How to choose the threshold on ROC curve or PR curve?

Threshold criteria for ROC curve:

|𝑆𝐸𝑁𝑆 − 𝑆𝑃𝐸𝐶| → min
Intersection of the ROC curve with line (0,1)—(1,0)
𝑌 = (𝑆𝐸𝑁𝑆 + 𝑆𝑃𝐸𝐶 − 1) → max, 𝑌 — Youden’s index
The point on the ROC curve whose tangent has a slope of one
(1 − 𝑆𝐸𝑁𝑆)2 + (𝑆𝑃𝐸𝐶 − 1)2 → min
The closest point on the ROC curve to “perfect” point (0,1)
𝑆𝐸𝑁𝑆 → max at fixed 𝑆𝑃𝐸𝐶

𝑆𝑃𝐸𝐶 → max at fixed 𝑆𝐸𝑁𝑆

𝐹1 → max

𝜅 → max

...
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Model-Wide Measures

ROC curve, ROC AUC
PR curve, PR AUC
CROC curve, CROC AUC
plot TPR against transformed FPR
CC-plot, CC AUC
plot normalized expected cost against probability of correctly
classified positives
...
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Multiclass Classification Problem

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample

𝑌 = {1, ...,𝐾} — class labels

Approaches to multiclass classification problem:

Reduction to binary
Reduction of the multiclass classification problem to a set of
binary classification problems
Extension from binary
Modifications of the existing binary classifiers to solve
multi-class classification problems
Hierarchical classification
Decomposition of the multiclass classification problem to
hierarchically organized classification problems
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Error-Correcting Output Coding

Error-correcting output coding (ECOC) is a method for
decomposing a multiclass classification problem into many binary
classification tasks, and then combining the results of the subtasks
into a hypothesized solution to the original problem

Stages of ECOC:

Construct many binary classifiers (base learners)
Apply a voting scheme to the outputs of each base learner

Coding design determines the classes that the base learners train on

Decoding scheme determines how the results (predictions) of the
binary classifiers are aggregated
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Coding Design

Coding design matrix is a 𝐾 × 𝐿 matrix that consists of –1,0 or 1:

𝑀 =

⎛⎝𝑚11 ... 𝑚1𝐿

... ... ...
𝑚𝐾1 ... 𝑚𝐾𝐿

⎞⎠
𝐾 — number of classes
𝐿 — number of base learners
𝑚𝑘𝑙 = −1 indicates that 𝑘-th class is to be included in negative
class for 𝑙-th binary learner
𝑚𝑘𝑙 = 1 indicates that 𝑘-th class is to be included in positive class
for 𝑙-th binary learner
𝑚𝑘𝑙 = 0 indicates that 𝑘-th class is to be ignored for 𝑙-th binary
learner
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One vs All (OVA)

For each binary learner, one class is positive and the rest are
negative

Number of learners: 𝐿 = 𝐾
Coding design matrix: square matrix, ones on principal diagonal,
rest elements are –1

Advantages:
— Low computational complexity

Disadvantages:
— Each binary learner deals with
unbalanced classes
— Need to re-train all learners if
a new class added
— Low robustness
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One vs One (OVO)

For each binary learner, one class is positive, another is negative,
and the rest are ignored

Number of learners: 𝐿 = 𝐾(𝐾−1)
2

Coding design matrix: each column contains one 1 and one –1,
rest elements are 0

Advantages:
Don’t need to re-train all learners
if a new class added

Disadvantages:
High computational complexity:
𝐿 ∼ 𝐾2
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OVA vs OVO

One vs All

One vs One

Alexander Trofimov Supervised Learning. Classification 52 / 69



Binary Classification
Multiclass Classification

ECOC Method
Other Approaches
Multiclass Performance Measures

Binary Complete Coding

This design partitions the classes into all binary combinations, and
does not ignore any classes

Number of learners: 𝐿 = 2𝐾−1 − 1
Coding design matrix: 𝑙-th column is a bipolar representation of
number 𝑙, 𝑙 = 1, ..., 2𝐾−1 − 1

For 𝐾 = 4:

𝑀 =

⎛⎜⎜⎝
−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 +1 +1 +1 +1
−1 +1 +1 −1 −1 +1 +1
+1 −1 +1 −1 +1 −1 +1

⎞⎟⎟⎠
At this design even if we fail in a bit, we still are able to obtain the
correct classification
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Ternary Complete Coding

This design partitions the classes into all ternary combinations

Number of learners: 𝐿 = 3𝐾−2𝐾+1+1
2

Coding design matrix: each column contains al least one 1 and
one –1

For 𝐾 = 3:

𝑀 =

⎛⎝−1 −1 −1 −1 −1 0
−1 +1 +1 +1 0 −1
+1 −1 +1 0 +1 +1

⎞⎠
This design exhausts all combinations of class assignments
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Random Coding

Dense random coding — for each binary learner, classes are
randomly assigned into positive or negative classes, with at least
one of each type
Sparse random coding — for each binary learner, classes are
randomly assigned into positive or negative classes, some classes
can be ignored

Dense random Sparse random
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Coding Design Strategies

One-versus-all
One-versus-one
Binary complete
Ternary complete
Dense random
Sparse random
Custom
Custom coding design matrix must have a certain form (all rows are
unique, can separate any two classes etc.)

The number of binary learners grows with the number of classes
For a problem with many classes, the binary complete and ternary
complete coding designs are not efficient

𝐾 ≤ 4 ⇒ ternary complete
𝐾 ≤ 5 ⇒ binary complete
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ECOC Decoding Scheme

Suppose that:
Class of hypotheses ℋ = {ℎ : ℎ(𝑥) = sign𝜙(𝑥,𝑤)},
where 𝜙(𝑥,𝑤) is a classification score for object 𝑥 ∈ 𝒳

Each binary learner ℎ𝑙 ∈ ℋ , 𝑙 = 1, ..., 𝐿: ℎ𝑙(𝑥) = sign𝜙𝑙(𝑥,𝑤𝑙)
where 𝜙𝑙(𝑥,𝑤𝑙) is a classification score of 𝑙-th binary learner for
object 𝑥 ∈ 𝒳

Score-based decoding:

𝑠𝑘 =

𝐿∑︁
𝑙=1

𝑚𝑘𝑙𝜙𝑙(𝑥,𝑤𝑙)

Score-weighted decoding:

𝑠𝑘 =

𝐿∑︀
𝑙=1

𝑚𝑘𝑙𝜙𝑙(𝑥,𝑤𝑙)

𝐿∑︀
𝑙=1

|𝑚𝑘𝑙|

Predicted class: 𝑘* = arg max
𝑘=1,𝐾

𝑠𝑘, 𝑠𝑘 is a score of 𝑘-th class
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Extension from Binary

Extension from binary approach supposes modifications of the
existing binary classifiers to solve multiclass classification problems

𝑘-nearest neighbours
Naturally extensible to the multiclass problem
Naive Bayes classifier
Naturally extensible to the multiclass problem
Multiclass support vector machine
Additional parameters and constraints are added to the SVM
optimization problem
Multiclass logistic regression
Use softmax functions
...
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Hierarchical Classification

Hierarchical classification supposes decomposition of the multiclass
classification problem to hierarchically organized classification
problems

If a case is misclassified at upper level it will continue to be
miss-classified at deeper levels too

Hierarchy has a big impact on the final classifier efficiency
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Measures of Classification Performance

Approaches to measuring:

Micro-averaging
Generalization to multiclass classification

𝑃𝑒𝑟𝑓𝜇 = 𝑃𝑒𝑟𝑓 (
∑︀

𝑘 𝑇𝑃𝑘,
∑︀

𝑘 𝐹𝑃𝑘,
∑︀

𝑘 𝑇𝑁𝑘,
∑︀

𝑘 𝐹𝑁𝑘)

Macro-averaging
Averaging of per-class measures over classes

𝑃𝑒𝑟𝑓𝑀 = 1
𝐾

∑︀
𝑘 𝑃𝑒𝑟𝑓(𝑇𝑃𝑘, 𝐹𝑃𝑘, 𝑇𝑁𝑘, 𝐹𝑁𝑘)

𝑃𝑒𝑟𝑓 — performance measure for binary classifier
𝑇𝑃𝑘, 𝑇𝑁𝑘, 𝐹𝑃𝑘, 𝐹𝑁𝑘 — TP, TN, FP and FN with respect to 𝑘-th
class: 𝑘-th class is considered as positive, rest classes as negative

All micro-averaged and macro-averaged performance measures are
based on OVA binary performance measures
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Multiclass Confusion Matrix

Positive: 1

... ... ...

Positive: 𝐾
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Multiclass Error Rate

Binary error rate:

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

Micro-averaged error rate:

𝐸𝑅𝑅𝜇 =

∑︀
𝑘 𝐹𝑃𝑘 +

∑︀
𝑘 𝐹𝑁𝑘∑︀

𝑘(𝑇𝑃𝑘 + 𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝑇𝑁𝑘)
=

∑︀
𝑘 𝐹𝑃𝑘 +

∑︀
𝑘 𝐹𝑁𝑘

𝐾𝑛

Macro-averaged error rate:

𝐸𝑅𝑅𝑀 =
1

𝐾

∑︁
𝑘

𝐹𝑃𝑘 + 𝐹𝑁𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝑇𝑁𝑘

=

∑︀
𝑘 𝐹𝑃𝑘 +

∑︀
𝑘 𝐹𝑁𝑘

𝐾𝑛
= 𝐸𝑅𝑅𝜇
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Multiclass Accuracy

Binary accuracy:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
= 1 − 𝐸𝑅𝑅

Micro-averaged accuracy:

𝐴𝐶𝐶𝜇 =

∑︀
𝑘 𝑇𝑃𝑘 +

∑︀
𝑘 𝑇𝑁𝑘∑︀

𝑘(𝑇𝑃𝑘 + 𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝑇𝑁𝑘)
=

∑︀
𝑘 𝑇𝑃𝑘 +

∑︀
𝑘 𝑇𝑁𝑘

𝐾𝑛

Macro-averaged accuracy:

𝐴𝐶𝐶𝑀 =
1

𝐾

∑︁
𝑘

𝑇𝑃𝑘 + 𝑇𝑁𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝑇𝑁𝑘

=

∑︀
𝑘 𝑇𝑃𝑘 +

∑︀
𝑘 𝑇𝑁𝑘

𝐾𝑛
= 𝐴𝐶𝐶𝜇
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Multiclass Confusion Matrix Based Measures

Micro-averaged measures:

𝑆𝐸𝑁𝑆𝜇 = 𝑅𝐸𝐶𝜇 =

∑︀
𝑘 𝑇𝑃𝑘∑︀

𝑘(𝑇𝑃𝑘 + 𝐹𝑁𝑘)

𝑆𝑃𝐸𝐶𝜇 =

∑︀
𝑘 𝑇𝑁𝑘∑︀

𝑘(𝑇𝑁𝑘 + 𝐹𝑃𝑘)

𝑃𝑅𝐸𝐶𝜇 = 𝑃𝑃𝑉𝜇 =

∑︀
𝑘 𝑇𝑃𝑘∑︀

𝑘(𝑇𝑃𝑘 + 𝐹𝑃𝑘)

Macro-averaged measures:

𝑆𝐸𝑁𝑆𝑀 = 𝑅𝐸𝐶𝑀 =
1

𝐾

∑︁
𝑘

𝑆𝐸𝑁𝑆𝑘 =
1

𝐾

∑︁
𝑘

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

𝑆𝑃𝐸𝐶𝑀 =
1

𝐾

∑︁
𝑘

𝑆𝑃𝐸𝐶𝑘 =
1

𝐾

∑︁
𝑘

𝑇𝑁𝑘

𝑇𝑁𝑘 + 𝐹𝑃𝑘

𝑃𝑅𝐸𝐶𝑀 = 𝑃𝑃𝑉𝑀 =
1

𝐾

∑︁
𝑘

𝑃𝑅𝐸𝐶𝑘 =
1

𝐾

∑︁
𝑘

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
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Sensitivity, Specificity, Precision and Recall. Illustration

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑘 (𝑅𝑒𝑐𝑎𝑙𝑙𝑘): How well does the classifier recognize
cases from class 𝑘?

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑘: How well does the classifier recognize that a case
does not belong to class 𝑘?

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 (𝑃𝑃𝑉𝑘): Given the prediction is class 𝑘, what is the
probability that the case truly belongs to class 𝑘?
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F-score and Cohen’s Kappa

Micro-averaged F-score:

𝐹𝜇𝛽 =
(1 + 𝛽2)(𝑃𝑅𝐸𝐶𝜇 ·𝑅𝐸𝐶𝜇)

𝛽2 · 𝑃𝑅𝐸𝐶𝜇 + 𝑅𝐸𝐶𝜇

Macro-averaged F-score:

𝐹𝑀𝛽 =
1

𝐾

𝐾∑︁
𝑘=1

(1 + 𝛽2)(𝑃𝑅𝐸𝐶𝑘 ·𝑅𝐸𝐶𝑘)

𝛽2 · 𝑃𝑅𝐸𝐶𝑘 + 𝑅𝐸𝐶𝑘

Cohen’s kappa is a performance measure over a random classifier:

𝜅 =
𝐴𝐶𝐶 −𝐴𝐶𝐶0

1 −𝐴𝐶𝐶0

where 𝐴𝐶𝐶0 is a probability of concordance between given
classifier ℎ and “true” classifier 𝑦:

𝐴𝐶𝐶0 =
∑︁
𝑘

𝑃 (ℎ(𝑥) = 𝑘)𝑃 (𝑦 = 𝑘) =
∑︁
𝑘

(𝑇𝑃𝑘 + 𝐹𝑃𝑘)𝑛𝑘

𝑛2
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Some Properties of Multiclass Measures

Property 1 ∑︁
𝑘

𝐹𝑃𝑘 =
∑︁
𝑘

𝐹𝑁𝑘

Property 2

𝐴𝐶𝐶𝜇 = 𝐴𝐶𝐶𝑀 , 𝐸𝑅𝑅𝜇 = 𝐸𝑅𝑅𝑀

Property 3

𝐴𝐶𝐶𝜇 = 1 − 𝐸𝑅𝑅𝜇, 𝐴𝐶𝐶𝑀 = 1 − 𝐸𝑅𝑅𝑀

Property 4

𝑃𝑅𝐸𝐶𝜇 = 𝑅𝐸𝐶𝜇 = 𝐹𝜇𝛽 = 𝐴𝐶𝐶 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝑡𝑜𝑡𝑎𝑙

Prove it!
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Multiclass ROC Analysis

Macro-averaging and micro-averaging approaches to ROC analysis

Micro-averaged AUC: 𝐴𝑈𝐶𝜇 = 𝐴𝑈𝐶(1 − 𝑆𝑃𝐸𝐶𝜇, 𝑆𝐸𝑁𝑆𝜇)
Macro-averaged AUC: 𝐴𝑈𝐶𝑀 = 1

𝐾

∑︀
𝑘 𝐴𝑈𝐶𝑘
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Micro-averaging vs Macro-averaging

Macro-averaging gives equal weight to each class
Micro-averaging gives equal weight to each per-class classification
decision

Macro-averaging treats all classes equally while micro-averaging
favors classes with a larger number of instances

Micro-averaging tends to over-emphasize the performance on the
largest classes, while macro-averaging over-emphasizes the
performance on the smallest

It’s often best to look at both of them to get a good idea of how
your data distributes across classes
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