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Regression Diagnostics

Regression diagnostics is a part of regression analysis whose
objective is to investigate if the trained model and the assumptions
we made about the data and the model, are consistent with the
observed data
Ways to regression diagnostics:

Checking the adequacy of the assumptions of regression
analysis
Detecting extreme points (outliers) that may be dominating
the regression and possibly distorting the results
Detecting if strong relationships among the independent
variables (collinearity) are affecting the results
Assessing model structure

Approaches to regression diagnostics:
Graphical analysis
Quantitative analysis
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Importance of Assumptions in Regression Analysis

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

where 𝑥 = (1, 𝑥1, ..., 𝑥𝑘), 𝛽 = (𝛽0, ..., 𝛽𝑘)
𝑇

Assumptions in linear regression analysis:

Linearity
Exogeneity of regressors
Homoscedasticity
Independence of errors
Normality
Variability of regressors

If these assumptions are violated, then the statistical inference may
be invalid
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Checking Linearity

Assumption: the regression function is linear 𝜙(𝑥) = 𝑥𝛽

Graphical diagnostics:

Residual plots
Partial regression plot

If there is a clear non-linear pattern in any of these plot, there is a
problem of non-linearity

Quantitative diagnostics:

Tests of the functional form of the model (Ramsey’s regression
error specification test, etc.)

Solutions:

Transformation of variables
Non-linear regression
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Non-linearity in Multiple Regression

The plots of residuals vs each of the predictor variables, outcome or
fitted values are called as residual plots

For simple regression:
The non-linearity is evident. The residual plots are usually sufficient
to identify non-linearity

For multiple regression:
The non-linearity can be masked. The individual bivariate plots do
not take into account the effect of the other explanatory variables
in the model
We need to look at the relationship between the outcome and
explanatory variables conditional on the other explanatory variables
How to exclude the effect of some variables on another
variable?
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Residual Plot. Illustration 1
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Residual Plot. Illustration 2
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Omitted Variable Bias

The influences on the dependent variable 𝑌 which are not captured
by the model are collected in the error term, which we assumed to
be uncorrelated with the regressors

If there is a variable omitted in the model but influencing the
outcome 𝑌 and it is related with existing regressors, then the
assumption of exogeneity is violated

The bias of OLS estimates due to this model misspecification is
called as omitted variable bias (OVB)

Negative effects of OVB:
OLS estimates become biased
Wrong interpretation of regression coefficients
OLS estimates become inconsistent
The OVB cannot be solved by increasing the number of
observations
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OVB and Model Misspecification

The true model:

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀(𝑥)

where 𝜀(𝑥) ∼ 𝑁(0, 𝜎2)

Good model:

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀1(𝑥)

The OLS-estimates 𝛽0, 𝛽1, 𝛽2 will be unbiased and consistent

Under-specified model:

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝜀2(𝑥)

The error term 𝜀2(𝑥) will take the influence of 𝑥2
𝑥1 and 𝑥2 are independent ⇒ 𝜀2(𝑥) and 𝑥1 are independent
𝑥1 and 𝑥2 are correlated ⇒ 𝜀2(𝑥) and 𝑥1 are correlated, the
exogeneity is violated ⇒ 𝛽0, 𝛽1 are biased and inconsistent
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Omitted Variable Bias. Examples

The true model:

𝑠𝑎𝑙𝑎𝑟𝑦 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝑠𝑘𝑖𝑙𝑙𝑠+ 𝜀(𝑥)

Under-specified model:

𝑠𝑎𝑙𝑎𝑟𝑦 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛+ 𝜀1(𝑥)

The OLS-estimate 𝛽1 will be overestimated (positive bias), since
𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑘𝑖𝑙𝑙𝑠 and 𝑠𝑎𝑙𝑎𝑟𝑦 are positively correlated

The true model:

𝑠𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1𝑔𝑎𝑚𝑒𝑡𝑖𝑚𝑒+ 𝛽2𝑠𝑡𝑢𝑑𝑦𝑡𝑖𝑚𝑒+ 𝜀(𝑥)

Under-specified model:

𝑠𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1𝑔𝑎𝑚𝑒𝑡𝑖𝑚𝑒+ 𝜀1(𝑥)

The OLS-estimate 𝛽1 will be underestimated (negative bias), since
𝜌(𝑔𝑎𝑚𝑒𝑡𝑖𝑚𝑒, 𝑠𝑡𝑢𝑑𝑦𝑡𝑖𝑚𝑒) < 0 and 𝜌(𝑠𝑡𝑢𝑑𝑦𝑡𝑖𝑚𝑒, 𝑠𝑐𝑜𝑟𝑒) > 0
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Partial Regression Plot

Regression of 𝑌 on explanation variables without 𝑥𝑗:

𝑦 = 𝑋∼𝑗𝛽 + 𝜀𝑌

Regression of 𝑋𝑗 on other explanation variables:

𝑥̂𝑗 = 𝑋∼𝑗𝛽 + 𝜀𝑋

where 𝑋∼𝑗 is a design matrix with excluded regressor 𝑥𝑗 , 𝑗 = 0, 𝑘

The scatter plot of 𝜀𝑌 vs 𝜀𝑋 is called as partial regression plot, or
added variable plot

𝜀𝑌 represents the part of the response values unexplained by the
predictors (except 𝑥𝑗), and 𝜀𝑋 represents the part of the 𝑥𝑗 values
unexplained by the other predictors

The fitted line in 𝜀𝑌 vs 𝜀𝑋 plane represents how the new
information introduced by adding 𝑥𝑗 can explain the unexplained
part of the response values
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Partial Regression Plot. Interpretation

Assume we already have a regression model of 𝑌 on 𝑥2 and
consider if we should add 𝑥1 into the model

a) 𝑥1 has no additional information useful for the prediction of 𝑌
beyond that contained in and provided for by 𝑥2

b) 𝑥1 contains useful addition information for the prediction of 𝑌
c) inclusion of 𝑥1 is justified but some non-linear transformation are
needed
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Partial Regression Plot. Notes

The partial regression plots are useful to identify
heteroscedasticity, influential data points, the need to include
the regressor into existing model and the need for non-linear
data transformation
If the slope of the fitted line in partial regression plot is close
to zero and the confidence bounds include a horizontal line,
then the new information from 𝑥𝑗 does not explain the
unexplained part of the response value. That is, 𝑥𝑗 is not
significant in the model fit
The partial regression plots in multiple linear regression play
the same role as the scatter diagrams in simple linear
regression
Some other plots (partial residual plot, CCPR plot) are related
with partial regression plot
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Partial Regression Plot. Illustration

Regression model: 𝑝𝑟𝑒𝑠𝑡𝑖𝑔𝑒 ∼ 1 + 𝑖𝑛𝑐𝑜𝑚𝑒+ 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
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Checking Heteroscedasticity

Assumption: the variance of the errors D[𝜀(𝑥)] = 𝜎2, ∀𝑥 ∈ 𝒳

Graphical diagnostics:
Residual plots

Statistical tests for heteroscedasticity:
White test
Breush-Pagan test
Park test
Glejser test
Goldfeld-Quandt test
...

Solutions:
Transformation of variables
Weighted least squares
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Heteroscedasticity of Residuals. Illustration 1
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Heteroscedasticity of Residuals. Illustration 2
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Exogeneity of Regressors

Linear model:
𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

Assumption: the explanatory variable 𝑋 and the error 𝜀(𝑥) are
independent ∀𝑥 ∈ 𝒳 . It means that the sampled values of
explanatory variable are independent on model errors

The assumption of exogeneity cannot be tested without additional
information about observed variables

Example: the sample obtained by using the model

𝑌 |𝑥𝑖 = 𝑥𝑖𝛽 + 𝜀(𝑥𝑖)

where 𝑥𝑖 = 𝑦𝑖−1, 𝜀(𝑥𝑖) is a random error, is not exogenous since 𝑥𝑖
are dependent on error 𝜀(𝑥𝑖−1)
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Independence of Errors

Assumption: any pair of errors 𝜀(𝑥𝑖) and 𝜀(𝑥𝑗) (or 𝑌 |𝑥𝑖 and
𝑌 |𝑥𝑗) are independent. Weaker assumption is uncorrelatedness:

𝑐𝑜𝑣[𝜀(𝑥𝑖), 𝜀(𝑥𝑗)] = 𝑐𝑜𝑣[𝑌 |𝑥𝑖, 𝑌 |𝑥𝑗 ] = 0 ∀𝑥𝑖, 𝑥𝑗 ∈ 𝒳 , 𝑖 ̸= 𝑗

Graphical diagnostics:
Residual lag plots

Statistical tests for autocorrelation:
Durbin-Watson test
Ljung-Box test
Breusch-Godfrey test
...

Solutions:
Whitening transformation of variables
Generalized least squares
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Residual Lag Plot. Illustration 1

Residual lag plot showing that the error term is independent
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Residual Lag Plot. Illustration 2

Residual lag plot showing that the error term is strongly correlated
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Normality of the Residuals

Assumption: the errors 𝜀(𝑥) ∼ 𝑁(0, 𝜎2), ∀𝑥 ∈ 𝒳

Graphical diagnostics:
Residual histogram
Q-Q plot

Statistical tests for normality:
Goodness-of-fit tests (chi-square test, Kolmogorov-Smirnov
test, etc.)
Jarque-Bera test
Shapiro-Wilk test
...

Solutions:
Transformation of variables
Generalized linear models
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Q-Q Plot

Let 𝑋 ∼ 𝐹 (𝑥) and 𝑌 ∼ 𝐺(𝑦). The 𝑞-th quantiles:

𝑥𝑞 = 𝐹−1(𝑞), 𝑦𝑞 = 𝐺−1(𝑞), 𝑞 ∈ (0, 1)

The Q-Q (quantile-quantile) curve is a parametric curve {(𝑥𝑞, 𝑦𝑞)}
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Normal Probability Plot

Q-Q plot is used to compare two probability distributions graphically

If 𝐹 (𝑥) is a normal distribution and 𝐺(𝑦) is a sample distribution,
then the Q-Q plot is called as normal probability plot

The expectation and variance of 𝐹 (𝑥) are usually unknown, the
sample mean and sample variances are used, 𝑋 ∼ 𝑁(𝑥̄, 𝑆2)
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Reference Line on Q-Q Plot

The Q-Q plot usually is drawn with a reference line. The reference
line connects the points corresponding to the lower and higher
quartiles (𝑞 = 0.25 and 𝑞 = 0.75) of the distributions

The reference line can also be a linear regression of 𝑦𝑞 on 𝑥𝑞
or line 𝑦 = 𝑥
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Normal Probability Plot. Illustration 1

Normally distributed data
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Normal Probability Plot. Illustration 2

Right-skewed data
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Normal Probability Plot. Illustration 3

Left-skewed data
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Normal Probability Plot. Illustration 4

Under-dispersed data (thin tails)
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Normal Probability Plot. Illustration 5

Over-dispersed data (fat tails)
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Normal Probability Plot. Interpretation

Each point on the Q-Q plot corresponds to a certain quantile
coming from both distributions
If the distributions being compared are similar, the points in
the Q-Q plot will approximately lie on the line 𝑦 = 𝑥

If the distributions are linearly related, the points in the Q-Q
plot will approximately lie on a line, but not necessarily on the
line 𝑦 = 𝑥

The points below the reference line to the left (or above the
reference line to the right) suggest a heavier tail (more
outliers) than a normal distribution
Flatter reference line indicates that the sample distribution has
fat tails and positive kurtosis. Steeper reference line indicates
that the sample distribution has thin tails and negative kurtosis
Outliers in Q-Q plot correspond to the outliers in the sample
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Residual Graphs. Illustration
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Regression Outliers

Regression outlier is an observation with large residual, i.e. it has an
unusual value of the outcome 𝑌 , conditioned on the values of the
exploratory variables 𝑥1, ..., 𝑥𝑘

Graphical diagnostics:
Standartized residual plots
Box plots

Measures of outlierness:
Cook’s distance
DFBETAS, DFFITS
...

Solutions:
Drop/treat outliers
Robust regression techniques
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Standartized Residual Plot

The standartized residuals have the distribution 𝑇 (𝑛− 𝑘 − 1)

Outliers can have a large residual value, but not necessarily affect
the estimated slope or intercept
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Box Plot

Box plot (or box-and-whisker diagram) is a standardized way of
displaying the distribution of data based on five statistics
(“minimum”, first quartile (Q1), median, third quartile (Q3), and
“maximum”)
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Leverage and Influence

Observations with extreme values of predictors have high leverage

High leverage points not necessarily affect the estimated slope or
intercept
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Cook’s Distance

An observation is said to be influential if removing the observation
substantially changes the estimate of coefficients

The Cook’s distance of 𝑖-th observation:

𝐷𝑖 =

∑︀𝑛
𝑙=1 (𝑦𝑙 − 𝑦𝑙,∼𝑖)

2

(𝑘 + 1)𝑆2
𝑒

, 𝑖 = 1, 𝑛

where 𝑦𝑙 is the 𝑙-th fitted response value, 𝑦𝑙,∼𝑖 is the 𝑙-th fitted
response value where the fit does not include 𝑖-th observation

It can be shown that the Cook’s distance

𝐷𝑖 =
𝜀2𝑖

(𝑘 + 1)𝑆2
𝑒

ℎ𝑖
(1− ℎ𝑖)2

, 𝑖 = 1, 𝑛

where 𝜀𝑖 is a residual, ℎ𝑖 is a leverage if 𝑖-th observation

Cook’s distance 𝐷𝑖 shows the influence of 𝑖-th observation on the
fitted response values
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Cook’s Distance. Illustration

An observation with Cook’s distance larger than a threshold 𝐷0

might be an outlier

The recommended threshold 𝐷0 = 3𝐷̄, 𝐷̄ =
∑︀𝑛

𝑖=1𝐷𝑖
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Multicollinearity

Definition
The explanatory variables 𝑥1, ...𝑥𝑘 are called multicollinear if they
are linearly related:

𝑐0 + 𝑐1𝑥1𝑖 + ...+ 𝑐𝑘𝑥𝑘𝑖 = 0 ∀𝑖 = 1, 𝑛

where 𝑐0, 𝑐1, ..., 𝑐𝑘 are constants and 𝑐21 + ...+ 𝑐2𝑘 > 0

The perfect multicollinearity is rare in practice, but high
multicollinearity results in loss of statistical resolution:

Large standardized residuals
Broad confidence intervals
Low 𝑡-statistics values, high 𝑝-values in hypotheses tests
Enormous sensitivity to small changes in data and model
specification
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Variability of Regressor. Illustration
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Multicollinearity. Illustration
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Multicollinearity Problem

Multiple linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

OLS-estimates:
𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦

where 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑥11 ... 𝑥𝑘1
... ... ... ...
1 𝑥1𝑛 ... 𝑥𝑘𝑛

⎞⎠
If 𝑥1, ...𝑥𝑘 are perfectly multicollinear, then at least one of the
columns of 𝑋 is a linear combination of the others,

rank(𝑋𝑇𝑋) = rank(𝑋) < 𝑘 + 1

and the matrix 𝑋𝑇𝑋 is not invertible
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Nearly Multicollinearity

The variables 𝑥1, ...𝑥𝑘 are nearly multicollinear if

𝑐0 + 𝑐1𝑥1𝑖 + ...+ 𝑐𝑘𝑥𝑘𝑖 + 𝜈𝑖 = 0 ∀𝑖 = 1, 𝑛

where 𝑐0, 𝑐1, ..., 𝑐𝑘 are constants, 𝑐21 + ...+ 𝑐2𝑘 > 0, and 𝜈𝑖 is a
random noise

For nearly multicollinear regressors the matrix 𝑋𝑇𝑋 has an inverse,
but it is ill-conditioned, so that numerical inversion algorithms may
be unstable, i.e. a small change in matrix elements results in a large
change in approximated inverse matrix

The condition number of matrix 𝐴:

𝜅(𝐴) =
|𝜆max|
|𝜆min|

where 𝜆min, 𝜆max are minimal and maximal eigenvalues of 𝐴
𝜅(𝐴) ≫ 0 ⇔ 𝐴 is ill-conditioned
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Multicollinearity Diagnostics

Graphical diagnostics:

Scatter plots

Quantitative diagnostics:

Pair-wise correlations between explanatory variables, 𝑅2

Condition number of 𝑋𝑇𝑋

Measures of multicollinearity (VIF, tolerance, etc.)
Farrar-Glauber test (F-G test)
...

Solutions:

Transformation of explanatory variables (PCA, ICA, etc.)
Regularized regression techniques
Partial least squares (PLS) regression
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Variance Inflation Factor

Idea: if the multiple linear regression of 𝑋𝑗 , 𝑗 = 1, 𝑘, on all other
explanatory variables has high coefficient of determination 𝑅2

𝑗 , then
there is multicollinearity between 𝑥1, ..., 𝑥𝑘

Variance inflation factor (VIF) of 𝑋𝑗:

𝑉 𝐼𝐹𝑗 =
1

1−𝑅2
𝑗

, 𝑗 = 1, 𝑘

where 𝑅2
𝑗 is the coefficient of determination of multiple regression

model:
𝑋𝑗 |𝑥∼𝑗 = 𝑥∼𝑗𝛽∼𝑗 + 𝜀(𝑥∼𝑗)

where 𝑥∼𝑗 is the vector of regressors with excluded 𝑥𝑗

High values of any 𝑉 𝐼𝐹𝑗 , 𝑗 = 1, 𝑘, indicate the multicollinearity
(𝑉 𝐼𝐹𝑗 & 5 is considered as severe multicollinearity)
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Pair-Wise Correlations vs Multicollinearity

Pair-wise correlations between the explanatory variables may be
considered as the sufficient, but not the necessary condition for the
multicollinearity
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Regularized Regression

If there is multicollinearity between explanatory variables, the
training of multiple regression model is ill-posed problem, the OLS
method is unstable

The possible solution is to regularize the objective function to make
the optimal solution unique:

𝐸′(𝛽) = 𝐸(𝛽) + 𝑟(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)
2 + 𝑟(𝛽)

where 𝑟(𝛽) is a regularizer (doesn’t depend on data)

Types of regularizers:
𝐿2 regularizer
𝐿1 regularizer
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𝐿2 Regularization

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

𝐿2-regularized criterion:

𝐸(𝛽) =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))
2 + 𝜇

𝑘∑︁
𝑗=0

𝛽2
𝑗 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)
2 + 𝜇𝛽𝑇𝛽

where 𝜇 > 0 is a regularization parameter

The system of normal equations:

(𝑋𝑇𝑋 + 𝜇𝐼)𝛽 = 𝑋𝑇 𝑦

OLS-estimates:

𝛽 = (𝑋𝑇𝑋 + 𝜇𝐼)−1𝑋𝑇 𝑦
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Ridge Regression. Notes

The regression trained with according to 𝐿2-regularized criterion is
called as ridge regression

The estimates 𝛽 are biased, the statistical inference is usually
not considered, and the assumption of normality of the
residuals is no longer necessary
The ridge parameter 𝜇 manages bias-variance trade-off of
regression model:
𝜇 increases ⇒ bias increases, variance decreases
𝜇 decreases ⇒ bias decreases, variance increases
For high 𝜇 the regression function becomes approximately
constant:

𝜇 ≫ 0 ⇒ 𝜙(𝑥) ≈ 𝑦

The regularization is usually not applied on the intercept 𝛽0
Cross-validation can be used in choosing 𝜇: select 𝜇 that yields
the smallest cross-validation prediction error
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Ridge Regression. Illustration
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Coefficient Scaling in Ridge Regression

The intercept 𝛽0 can be excluded from the regression model by
centering and scaling:

𝑌 ′|𝑥′ = 𝑥′𝛽′ + 𝜀′(𝑥′)

where 𝑥′ = (𝑥′1, ..., 𝑥
′
𝑘), 𝛽

′ = (𝛽′
1, ..., 𝛽

′
𝑘)

𝑇 and

𝑥′𝑗𝑖 =
𝑥𝑗𝑖 − 𝑥̄𝑗

𝑠𝑗
, 𝑖 = 1, 𝑛, 𝑗 = 1, 𝑘

𝑦′𝑖 = 𝑦𝑖 − 𝑦, 𝑖 = 1, 𝑛

The original coefficients:

𝛽0 = 𝑦 −
𝑘∑︁

𝑗=1

𝛽′
𝑗 𝑥̄𝑗

𝑠𝑗
, 𝛽𝑗 =

𝛽′
𝑗

𝑠𝑗
, 𝑗 = 1, 𝑘

The coefficients 𝛽′
1, ..., 𝛽

′
𝑘 are comparable, they are useful for visual

analysis of regressors’ “importance” on ridge trace plot
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Ridge Trace Plot

Ridge trace plot is a graph of estimates 𝛽′
1(𝜇), ..., 𝛽

′
𝑘(𝜇) as

functions of the ridge parameter 𝜇
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𝐿1 Regularization

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

𝐿1-regularized criterion:

𝐸(𝛽) =
1

2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))
2 + 𝜇

𝑘∑︁
𝑗=0

|𝛽𝑗 |

where 𝜇 > 0 is a regularization parameter

The regression trained with according to 𝐿1-regularized criterion is
called as LASSO (Least Absolute Shrinkage and Selection
Operator) regression

LASSO regression does not have a closed-form solution, iterative
approach is required for training (based on descend methods, etc.)
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𝐿2 vs 𝐿1 Regularization. Illustration

𝐿1 regularization tends to concentrate the regression parameters in
a relatively small number of high-important parameters, while
others are driven toward zero
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Ridge vs LASSO Trace Plots

LASSO approach is useful for feature selection
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Elastic Net Regression

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

Elastic net criterion:

𝐸(𝛽) =
1

2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))
2 + 𝜇

𝑘∑︁
𝑗=0

(︂
1− 𝛼

2
𝛽2
𝑗 + 𝛼|𝛽𝑗 |

)︂
where 𝜇 > 0 is a regularization parameter, 𝛼 is a ridge/LASSO
ratio, 0 < 𝛼 < 1

Elastic net regression is a hybrid of ridge regression and LASSO
regression. Like LASSO, elastic net can generate reduced models by
generating zero-valued coefficients

Empirical studies have suggested that the elastic net technique can
outperform LASSO on data with highly correlated predictors
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Feature Selection

Feature selection is the process of selecting a subset of relevant
features for use in model construction

Why select features?
To improve model prediction performance
To provide faster training
To provide a better interpretation of the trained model
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Model Misspecification

Model misspecification refers to all of the ways that the regression
model might fail to represent the true underlying model (or data
generating process)

Types of model misspecification:
Under-specification
Omitted explanatory variables may cause omitted variable bias
in OLS estimates
Over-specification
Redundant explanatory variables may cause multicollinearity
and wrong statistical inferences
Functional form misspecification
Model has the appropriate explanatory variables, but the
functional relationship is wrongly specified

The assumptions of regression analysis may be violated for
misspecified model
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Adding a New Variable into the Model

Suppose we have a regression model 𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥+ 𝜀(𝑥) and
observations for some new variable 𝑧

Should this variable 𝑧 be included into the model?

𝑧 is related to both 𝑥 and 𝑦
It’s reasonable to include 𝑧 and then solve possible
multicollinearity
𝑧 is unrelated to 𝑥 but related to 𝑦
Adding 𝑧 will reduce residual variance, it should be included
into the model
𝑧 is related to 𝑥 but unrelated to 𝑦
Adding 𝑧 to the regression won’t reduce OVB and residual
variance, moreover can cause multicollinearity
𝑧 is unrelated to both 𝑥 and 𝑦
It doesn’t matter much whether you include it or exclude it
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Adding a New Variable into the Model

What happens when a new variable is added to the model?

The estimate 𝛽1 changes a lot
𝑧 is related to 𝑥 and 𝑦 so it should be included to avoid OVB
and then we need to solve possible multicollinearity
The estimate 𝛽1 doesn’t change
𝑧 is unrelated to 𝑥 or unrelated to 𝑦 or both

D[𝛽1] is increased
𝑧 causes multicollinearity, it should be excluded
D[𝛽1] is decreased
𝑧 and 𝑦 are related. Regardless including 𝑧 doesn’t decrease
OVB, it should be included to decrease estimation errors
D[𝛽1] is not affected
𝑧 is unrelated to 𝑥 and unrelated to 𝑦, it’s not a problem by
omitting 𝑧

Alexander Trofimov Regression Diagnostics 60 / 67



Checking Regression Assumptions
Detecting Regression Outliers

Detecting Multicollinearity

Multicollinearity Problem
Regularized Regression
Feature Selection for Regression

Feature Selection Approaches

Filter methods
Assign a scoring to each feature, usually univariate and
consider the features independently. The selection is performed
before the training algorithm
Wrapper methods
Manipulate with features (add or remove them) during the
training process. The selection criterion directly measures the
change in model performance that results from adding or
removing the features
Embedded methods
Learn feature importance as part of the model training
process. Once you train a model, you obtain the importance of
the features in the trained model
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Sequential Feature Selection

The goal: to find the feature subset that minimizes the prediction
error
If the number 𝑘 of features is small, the exhaustive feature selection
can be applied, but it’s infeasible for large 𝑘

Sequential feature selection is a type of greedy search algorithms

For sequential feature selection we need:
Objective function (criterion)
Measure of the quality of the model and, hence, of the feature
subset used (usually, MSE)
Search algorithm
How to add or remove features from a feature subset

Filter methods: the criterion is independent of the training process
Wrapper methods: the criterion is related to machine learning
model and loss function used in training
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Sequential Feature Selection Approaches

Sequential forward selection
Features are sequentially added to an empty candidate set until
the addition of further features does not decrease the criterion
Sequential backward selection
Features are sequentially removed from a full candidate set
until the removal of further features increase the criterion
Sequential forward floating selection
Features are sequentially added, but can also be removed at
some steps
Sequential backward floating selection
Features are sequentially removed, but can also be included at
some steps
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Stepwise Regression

Stepwise regression is a type of sequential floating selection for
regression model

Forward stepwise regression: we start from the simplest model
Backward stepwise regression: we start from the complex model
with all possible regressors

Stepwise regression algorithm
Step 1. Fit the initial model
Step 2. Add the most significant feature into the model, if
any. Repeat the step until there are no significant features to
add
Step 3. Remove the most insignificant feature from the
model, if any, and go to step 2. If there are no insignificant
features, end the process

What is the measure of feature significance for the model?
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F-test to Compare Two Models

Suppose we have two set of features 𝒳0 and 𝒳1 and the
corresponding trained regression models

Do these models differ significantly?

Statistical hypothesis: 𝐻0 : 𝑅
2
1 = 𝑅2

0

Test statistic:

𝑍 =
(𝐷*

𝑟𝑒𝑠0 −𝐷*
𝑟𝑒𝑠1)/(𝑘1 − 𝑘0)

𝐷*
𝑟𝑒𝑠1/(𝑛− 𝑘1 − 1)

, 𝑍|𝐻0 ∼ 𝐹 (𝑘1 − 𝑘0, 𝑛− 𝑘1 − 1)

where 𝑘0, 𝑘1 are the numbers of explanatory variables in the
models, and 𝐷*

𝑟𝑒𝑠0, 𝐷
*
𝑟𝑒𝑠1 are residual variances of the models:

𝐷*
𝑟𝑒𝑠 =

1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))
2

𝑝 > 𝛼 ⇒ 𝐻0 accepted, the difference is insignificant
𝑝 ≤ 𝛼 ⇒ 𝐻0 rejected, the difference is significant
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Stepwise Regression. Notes

Stepwise feature selection approach can be used with OLS,
WLS, GLS. For robust regressions the F-test is no longer valid
It’s recommended to check and remove outliers before stepwise
regression
Stepwise regression finds suboptimal subset of features. The
global optimum of objective function is not guaranteed
Stepwise selection uses many repeated hypothesis tests to
make decisions on the inclusion or exclusion of individual
predictors. It leads to inflation of false positive findings, the
suboptimality of the subset of features may be violated
The validation sample should be used to estimate the quality
of the subset of features at each iteration
Stepwise regression encounters a lot of criticism*

*Harrell F. Regression modeling strategies: with applications to linear models, logistic and ordinal
regression, and survival analysis. New York: Springer, 2015.
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Stepwise Regression. Example
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