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Theoretical and Statistical Models

Types of mathematical models:
Theoretical models (physical models, economical models, etc.)
Statistical models (data-driven)
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What is Statistical Model?

Definition
Statistical models are mathematical models used to describe
patterns of variability that random variables or data may display

In fact, statistical model is represented as a collection of probability
distributions 𝒫 = {𝑃} of random variable or vector 𝑋

Data that are observations of random variable or vector 𝑋, are
used to select a specific distribution 𝑃 ∈ 𝒫

The statistical model is called parametrized if

𝒫 = {𝑃𝜃, 𝜃 ∈ Θ}

where Θ is the parameter space

The statistical assumptions about the process under modelling are
usually needed to construct its statistical model
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Example 1: Binomial Statistical Model

Experiment:
The manufactured items are inspected for defects. 𝑁 is a number
of observed items, 𝑛 is the number of defected items among them

What statistical model can be proposed for this experiment?

Description:
Let 𝑋 be the number of defected items among 𝑁 items, and 𝑝 is
the probability of defect for every single item (that is unknown)

Then, the probabilities for 𝑋:

𝑃 (𝑘, 𝑝) = 𝑃 [𝑋 = 𝑘] = 𝐶𝑘
𝑁𝑝𝑘(1 − 𝑝)𝑁−𝑘, 𝑘 ∈ {0, 1, ..., 𝑁}

and the random variable 𝑋 has a binomial distribution 𝐵(𝑁, 𝑝),
and 𝑛 is an observation of the random variable 𝑋
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Example 1: Binomial Statistical Model

Statistical model:
𝑋 ∼ 𝐵(𝑁, 𝑝)

𝒫 = {𝑃 (𝑘, 𝑝), 𝑝 ∈ [0, 1]}

Fitting to the data:
The specific distribution 𝑃 from 𝒫 is obtained by fitting the
parameter 𝑝 to the given data:

𝑝 =
𝑛

𝑁

The 𝑝 is an observed proportion of defected items that is an
estimation of probability 𝑝 of defect for every single item

The probabilities for 𝑋 after fitting:

𝑃 (𝑘) = 𝐶𝑘
𝑁𝑝𝑘(1 − 𝑝)𝑁−𝑘, 𝑘 ∈ {0, 1, ..., 𝑁}
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Example 2: Multinomial Statistical Model

Experiment:
Three persons play cards 𝑁 = 10 times. The 1-st player won in 2
games, the 2-nd player won in 3 games, and the 3-rd player won in
5 games

What statistical model can be proposed for this experiment?

Description:
Let 𝑋 = (𝑋1, ..., 𝑋𝑀 )𝑇 be the numbers of games won by players
1, ...,𝑀 respectively, 𝑝𝑗 is the probability of winning for 𝑗-th player
(that is unknown), 𝑗 = 1,𝑀 , and 𝑀 is the number of players
Then, the probabilities for 𝑋:

𝑃 (𝑥) = 𝑃 [𝑋 = 𝑥] =
𝑁 !∏︀𝑀
𝑗=1 𝑥𝑗 !

𝑀∏︁
𝑗=1

𝑝
𝑥𝑗

𝑗

where 𝑥 = (𝑥1, ..., 𝑥𝑀 )𝑇 , 𝑥𝑗 ∈ {0, ...,𝑀}, 𝑗 = 1,𝑀 ,
∑︀𝑀

𝑗=1 𝑥𝑗 = 𝑁
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Example 2: Multinomial Statistical Model

Statistical model:

𝑋 ∼ 𝑀𝑢𝑙𝑡(𝑁, 𝑝1, ..., 𝑝𝑀 )

𝒫 =
{︁
𝑃𝑋(𝑥, 𝑝), 𝑝 ∈ [0, 1]𝑀 ,

∑︀𝑀
𝑗=1 𝑝𝑗 = 1

}︁
where 𝑝 = (𝑝1, ..., 𝑝𝑀 ) is a vector of parameters

Fitting to the data:
The estimation 𝑝𝑗 of probability 𝑝𝑗 is a frequency of wins for 𝑗-th
player:

𝑝𝑗 =
𝑛𝑗

𝑁
, 𝑗 = 1,𝑀

The probabilities for 𝑋 after fitting:

𝑃 (𝑥) =
𝑁 !∏︀𝑀
𝑗=1 𝑥𝑗 !

𝑀∏︁
𝑗=1

𝑝
𝑥𝑗

𝑗
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Example 3: One-Sample Normal Statistical Model

Experiment:
The sample 𝑥1, ..., 𝑥𝑛 are independent measurements of a physical
constant 𝜇 in a scientific experiment

What statistical model can be proposed for this experiment?

Description:
Let 𝑋 be the result of measurement of a physical constant 𝜇.
Suppose, that measurement errors are additive Gaussian white noise
with variance 𝜎2:

𝑋 = 𝜇 + 𝜀

where 𝜀 is a random variable, 𝜀 ∼ 𝑁(0, 𝜎2)
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Example 3: One-Sample Normal Statistical Model

Statistical model:
𝑋 ∼ 𝑁(𝜇, 𝜎2)

𝒫 =

{︂
𝑃 (𝑥) =

1

𝜎
√

2𝜋
exp

(︂
−(𝑥− 𝜇)2

2𝜎2

)︂
, 𝜇 ∈ R, 𝜎 > 0

}︂
where 𝜇 and 𝜎 are unknown constants
Fitting to the data:

𝜇̂ = 𝑥̄ =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

𝜎̂2 = 𝑠2 =
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥̄)2

The probability distribution of 𝑋 after fitting:

𝑃 (𝑥) =
1

𝑠
√

2𝜋
exp

(︂
−(𝑥− 𝑥̄)2

2𝑠2

)︂
Alexander Trofimov Regression Fitting Techniques 9 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Statistical Models
Regression Models
Regression Analysis

Example 4: Two-Sample Normal Statistical Model

Experiment:
The samples 𝑥1, ..., 𝑥𝑛1 and 𝑦1, ..., 𝑦𝑛2 are independent
measurements of the same device characteristic before and after its
tuning

What statistical model can be proposed for this experiment?

Description:
Let random variables 𝑋 and 𝑌 be the results of measurements
before and after tuning respectively. Suppose, that the device
characteristic before tuning was equal to 𝜇1 and after tuning
became equal to 𝜇2. Also suppose the measurement errors are
additive Gaussian white noise with variance 𝜎2:

𝑋 = 𝜇1 + 𝜀, 𝑌 = 𝜇2 + 𝜀

where 𝜀 is a random variable, 𝜀 ∼ 𝑁(0, 𝜎2)

Alexander Trofimov Regression Fitting Techniques 10 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Statistical Models
Regression Models
Regression Analysis

Example 4: Two-Sample Normal Statistical Model

Experiment:
The samples 𝑥1, ..., 𝑥𝑛1 and 𝑦1, ..., 𝑦𝑛2 are independent
measurements of the same device characteristic before and after its
tuning

What statistical model can be proposed for this experiment?

Description:
Let random variables 𝑋 and 𝑌 be the results of measurements
before and after tuning respectively. Suppose, that the device
characteristic before tuning was equal to 𝜇1 and after tuning
became equal to 𝜇2. Also suppose the measurement errors are
additive Gaussian white noise with variance 𝜎2:

𝑋 = 𝜇1 + 𝜀, 𝑌 = 𝜇2 + 𝜀

where 𝜀 is a random variable, 𝜀 ∼ 𝑁(0, 𝜎2)

Alexander Trofimov Regression Fitting Techniques 10 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Statistical Models
Regression Models
Regression Analysis

Example 4: Two-Sample Normal Statistical Model

Statistical model:

𝑋 ∼ 𝑁(𝜇1, 𝜎
2), 𝑌 ∼ 𝑁(𝜇2, 𝜎

2)

where 𝜇1, 𝜇2 and 𝜎 are unknown constants

Fitting to the data:

𝜇̂1 = 𝑥̄ =
1

𝑛1

𝑛1∑︁
𝑖=1

𝑥𝑖, 𝜇̂2 = 𝑦 =
1

𝑛2

𝑛2∑︁
𝑖=1

𝑦𝑖

𝜎̂2 = 𝑠2 =
(𝑛1 − 1)𝑠21 + (𝑛2 − 1)𝑠22

𝑛1 + 𝑛2 − 2

where 𝑠21 and 𝑠21 are estimations of 𝜎2
1 and 𝜎2

2. The estimation 𝑠2 is
called as pooled estimation of variance 𝜎2

The probability distribution of 𝑋 and 𝑌 after fitting:

𝑋 ∼ 𝑁(𝑥̄, 𝑠2), 𝑌 ∼ 𝑁(𝑦, 𝑠2)
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Regression Models

Particular case of statistical models are regression models

𝐹
(unknown)

ℎ
(model)

𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

ℎ(𝑥)

𝐿(ℎ, (𝑥, 𝑦))

𝑥 ∈ 𝒳 is a vector of independent variables called as regressors, or
predictors, or explanatory variables
𝑦 ∈ 𝒴 is a dependent variable called as outcome, or response. The
response domain 𝒴 is a set of real numbers, 𝒴 = R
𝐿(ℎ, (𝑥, 𝑦)) is a loss function associated with model ℎ
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Regression Models. Problem Statement

Given:
𝒟𝑇 = {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)} is a training data sample

ℋ is a class of hypotheses (e.g., linear functions)

𝐿(ℎ, (𝑥, 𝑦)) = (ℎ(𝑥) − 𝑦)2 is a quadratic loss function

Objective:
Find hypothesis ℎ ∈ ℋ that minimizes empirical risk 𝑅* over
training sample 𝒟𝑇 :

𝑅*(ℎ) =
1

𝑛

𝑛∑︁
𝑖=1

(ℎ(𝑥𝑖) − 𝑦𝑖)
2 → min

ℎ∈ℋ

If ℋ is parametrized, ℋ = {ℎ𝛽, 𝛽 ∈ R𝑘}, then

𝑅*(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

(ℎ(𝑥𝑖, 𝛽) − 𝑦𝑖)
2 → min

𝛽∈R𝑘
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Risk for Quadratic Loss

The target mapping 𝐹 is considered to be stochastic, and model
output ℎ(𝑥) is deterministic for any 𝑥 ∈ 𝒳

Risk for quadratic loss function 𝐿(ℎ, (𝑥, 𝑌 )) at given 𝑥 ∈ 𝒳 :

𝑅(ℎ, 𝑥) = M[𝐿(ℎ, (𝑥, 𝑌 ))|𝑥] = M
[︀
(ℎ(𝑥) − 𝑌 )2|𝑥

]︀
= ℎ2(𝑥) − 2ℎ(𝑥)M[𝑌 |𝑥] + M[𝑌 2|𝑥]

= ℎ2(𝑥) − 2ℎ(𝑥)M[𝑌 |𝑥] + D[𝑌 |𝑥] + (M[𝑌 |𝑥])2

= (ℎ(𝑥) − M[𝑌 |𝑥])2 + 𝜎2
𝑥

(ℎ(𝑥) − M[𝑌 |𝑥])2 is a error of model ℎ at given 𝑥 ∈ 𝒳

𝜎2
𝑥 = D[𝑌 |𝑥] is a noise, doesn’t depend on 𝒟 or ℎ

The risk 𝑅(ℎ, 𝑥) is minimal if
ℎ(𝑥) = M[𝑌 |𝑥],∀𝑥 ∈ 𝒳 ⇔ ℎ(𝑥) is a regression function of 𝑌 on 𝑥
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Regression Function

Let (𝑋,𝑌 ) be a random vector, (𝑋,𝑌 ) ∼ 𝐹𝑋𝑌 (𝑥, 𝑦)

Definition
Regression function 𝜙(𝑥) of 𝑌 on 𝑥 is a conditional expectation of
random variable 𝑌 as a function of 𝑥:

𝜙(𝑥) = M[𝑌 |𝑥], 𝑥 ∈ 𝒳

Probability theory background:

M[𝑌 |𝑥] =

∫︁ ∞

−∞
𝑦𝑓𝑌 (𝑦|𝑥)𝑑𝑦

𝑓𝑌 (𝑦|𝑥) =
𝑓𝑋𝑌 (𝑥, 𝑦)

𝑓𝑋(𝑥)

𝑓𝑋(𝑥) =

∫︁ ∞

−∞
𝑓𝑋𝑌 (𝑥, 𝑦)𝑑𝑦, 𝑓𝑋𝑌 (𝑥, 𝑦) =

𝜕𝐹𝑋𝑌 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦
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Regression Function. Illustration 1
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Regression Function. Illustration 2
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Regression Function. Illustration 3
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Optimality of Regression Models

Optimal case:
ℎ(𝑥) = 𝜙(𝑥) = M[𝑌 |𝑥]

The regression model of response 𝑌 for a given 𝑥 ∈ 𝒳 :

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥) = M[𝑌 |𝑥] + 𝜀(𝑥)

where 𝜀(𝑥) is a random variable (noise)

The regression error:

𝜀(𝑥) = 𝑌 |𝑥− M[𝑌 |𝑥]

M[𝜀(𝑥)] = M[𝑌 |𝑥] − M[𝑌 |𝑥] = 0

D[𝜀(𝑥)] = M[𝜀(𝑥)2] = M[(𝑌 |𝑥− M[𝑌 |𝑥])2] = D[𝑌 |𝑥] = 𝜎2
𝑥

The regression model has minimum variance of model errors
D[𝜀(𝑥)] among all statistical models (prove it!)
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Regression Analysis

The objective of regression analysis is to estimate the relationship
between a quantitative response variable 𝑌 and one or more
explanatory variables 𝑋1, ..., 𝑋𝑘

Purposes of regression analysis:
Description or explanation
Finding the explanatory variables that matter, estimating their
effect on the outcome, concluding the mechanism, law

Prediction
Estimating missing data within the range of 𝑋 values or
predict data outside the range (extrapolation)

Auxiliary purposes
Data reduction, filter linear effects, etc.
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How to Find the Regression Function?

For a given joint distribution 𝐹𝑋𝑌 (𝑥, 𝑦) the regression function
𝜙(𝑥) can be derived analytically

In practice we usually don’t know 𝐹𝑋𝑌 (𝑥, 𝑦), and the regression
function 𝜙(𝑥) should be estimated, or fitted to the data

Fitted regression model:

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥)

where 𝜙(𝑥) is an estimate of regression function 𝜙(𝑥) based on the
given training data sample

The problem of function estimation is ill-posed, some distributional
assumptions about 𝐹𝑌 (𝑦|𝑥) are needed
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Types of Regression Analysis

Parametric
The family of distributions {𝐹𝑌 (𝑦|𝑥)} is fully specified up to
unknown parameters 𝛽, that leads to a parametric class of
hypothesis ℋ = {ℎ(𝑥, 𝛽), 𝛽 ∈ R𝑘}, e.g.:

𝑌 |𝑥 ∼ 𝑁(𝛽0 + 𝛽1𝑥, 𝜎
2)

Semi-parametric
Some aspects of the distribution 𝐹𝑌 (𝑦|𝑥) are described by
parameters 𝛽, but others are left unspecified, e.g.:

M[𝑌 |𝑥] = 𝛽0 + 𝛽1𝑥, D[𝑌 |𝑥] = 𝜎2

Non-parametric
No distributional assumptions about 𝐹𝑌 (𝑦|𝑥)
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Regression Analysis Pipeline

Step 1. Specify outcome 𝑌 and explanatory variables
𝑥1, ..., 𝑥𝑘

Step 2. Propose distributional assumptions about 𝐹𝑌 (𝑦|𝑥)
and specify the class of regression models ℋ

Step 3. Estimate the regression function 𝜙(𝑥) or its
parameters 𝛽 using the data

Step 4. Validate the regression model (regression diagnostic)

Step 5. Interpret the regression results

Step 6. If necessary modify model and/or distributional
assumptions

Step 7. Use the regression model
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Simple Linear Regression

In simple linear regression the relationship between response 𝑌 and
explanatory variable 𝑥 is modelled as

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥 + 𝜀(𝑥)

where 𝛽0, 𝛽1 are parameters to be estimated (or fitted) using the
data, 𝛽0 is intercept, 𝛽1 is slope (or rate of change), 𝜀(𝑥) is a
random error

The regression function 𝜙(𝑥) is assumed to be linear:

𝜙(𝑥) = M[𝑌 |𝑥] = 𝛽0 + 𝛽1𝑥

Differences between actual and modelled responses are called
regression errors:

𝜀𝑖 = 𝑦𝑖 − 𝜙(𝑥𝑖) = 𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖, 𝑖 = 1, ..., 𝑛
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Ordinary Least Squares

The ordinary least squares (OLS) method finds the optimal
parameter values by minimizing the sum (or mean) of squared
residuals:

𝐸(𝛽0, 𝛽1) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖))
2 =

1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

The minimum is found by setting the gradient to zero:
𝜕𝐸(𝛽0, 𝛽1)

𝜕𝛽0
= − 1

𝑛

∑︁
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

𝜕𝐸(𝛽0, 𝛽1)

𝜕𝛽1
= − 1

𝑛

∑︁
𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

The system of linear equations (so called normal equations):{︃
𝛽0𝑛 + 𝛽1

∑︀
𝑥𝑖 =

∑︀
𝑦𝑖,

𝛽0
∑︀

𝑥𝑖 + 𝛽1
∑︀

𝑥2𝑖 =
∑︀

𝑥𝑖𝑦𝑖
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Parameters Estimation

The system of normal equations in matrix form:

𝑋𝑇𝑋𝛽 = 𝑋𝑇 𝑦

where 𝛽 = (𝛽0, 𝛽1)
𝑇 is vector of parameters, 𝑦 = (𝑦1, ..., 𝑦𝑛)𝑇 is

vector of responses, 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑥1
... ...
1 𝑥𝑛

⎞⎠
The closed-form solution:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦

In scalar form:
𝛽0 = 𝑦 − 𝛽1𝑥̄

𝛽1 =

∑︀
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦)∑︀

(𝑥𝑖 − 𝑥̄)2
= 𝜌𝑋𝑌

𝑠𝑌
𝑠𝑋

where 𝜌𝑋𝑌 is sample correlation, 𝑠𝑋 and 𝑠𝑌 are standard deviations
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Simple Linear Regression. Illustration 1
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Simple Linear Regression. Illustration 2
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OLS as an Estimator

OLS is a method for parameters estimation, it can be viewed as a
machine that we plug data into and we get out estimates

The estimates 𝛽0, 𝛽1 are random variables just like the sample
mean or the sample variance or any other statistics

As a result, the estimate 𝜙(𝑥) = 𝛽0 + 𝛽1𝑥 of conditional
expectation 𝜙(𝑥) = M[𝑌 |𝑥] will also be a random variable
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Randomness of Estimates. Illustration

Red line is true (population) regression, blue line is an estimate for
random sample
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Regression Errors

Regression errors 𝜀1, ..., 𝜀𝑛 are the deviations of the observations
𝑦1, ..., 𝑦𝑛 of dependent variable 𝑌 from values 𝜙(𝑥1), ..., 𝜙(𝑥𝑛) of
the regression function 𝜙(𝑥):

𝜀𝑖 = 𝑦𝑖 − 𝜙(𝑥𝑖), 𝑖 = 1, 𝑛

As soon as the regression function 𝜙(𝑥) is unknown, the errors
𝜀1, ..., 𝜀𝑛 are unknown

Random regression errors 𝜀1, ..., 𝜀𝑛 are the deviations of random
variables 𝑌 |𝑥1, ..., 𝑌 |𝑥𝑛 from values 𝜙(𝑥1), ..., 𝜙(𝑥𝑛) of the
regression function 𝜙(𝑥):

𝜀𝑖 = 𝑌 |𝑥𝑖 − 𝜙(𝑥𝑖) = 𝑌𝑖 − 𝜙(𝑥𝑖), 𝑖 = 1, 𝑛

As soon as 𝑌 |𝑥1, ..., 𝑌 |𝑥𝑛 are random variables, the errors 𝜀1, ..., 𝜀𝑛
are random variables too
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Regression Residuals

Regression residuals 𝜀1, ..., 𝜀𝑛 are the differences between the
observations 𝑦1, ..., 𝑦𝑛 and estimated values 𝜙(𝑥1), ..., 𝜙(𝑥𝑛) of the
regression function 𝜙(𝑥):

𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖 = 𝑦𝑖 − 𝜙(𝑥𝑖), 𝑖 = 1, 𝑛

Regression residuals are observed, they form a sample of values

Random regression residuals 𝜀1, ..., 𝜀𝑛 are the differences between
the random variables 𝑌 |𝑥1, ..., 𝑌 |𝑥𝑛 and estimates 𝜙(𝑥1), ..., 𝜙(𝑥𝑛)
of the regression function 𝜙(𝑥):

𝜀𝑖 = 𝑌 |𝑥𝑖 − 𝜙(𝑥𝑖) = 𝑌𝑖 − 𝜙(𝑥𝑖), 𝑖 = 1, 𝑛

The estimates 𝜙(𝑥1), ..., 𝜙(𝑥𝑛) are also random as soon as
𝜙(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 and the estimates 𝛽0, 𝛽1 are random variables
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Assumptions in Regression Analysis

OLS procedure only provides estimates of the coefficients 𝛽, it
makes no assumptions about the random errors 𝜀1, ..., 𝜀𝑛
The statistical assumptions are needed to make statistical
inferences for regression

Linearity
The regression function: 𝜙(𝑥) = M[𝑌 |𝑥] = 𝛽0 + 𝛽1𝑥

𝑌 |𝑥 = 𝜙(𝑥) + 𝜀(𝑥)

M[𝑌 |𝑥] = M[𝜙(𝑥) + 𝜀(𝑥)] = 𝜙(𝑥) + M[𝜀(𝑥)]

It’s equivalent to the centerness of random errors:

M[𝜀(𝑥)] = 0 ∀𝑥 ∈ 𝒳

Exogeneity of regressors
The explanatory variable 𝑋 and the error 𝜀(𝑥) are independent
∀𝑥 ∈ 𝒳 . It means that the sampled values of explanatory
variable are independent on model errors
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Assumptions in Regression Analysis

Homoscedasticity
The variance of the errors is the same regardless of the value
of explanatory variable:

D[𝜀(𝑥)] = 𝜎2 ∀𝑥 ∈ 𝒳

It means that the response variable 𝑌 is also homoscedastic:

D[𝑌 |𝑥] = D[𝛽0 + 𝛽1𝑥 + 𝜀(𝑥)] = D[𝜀(𝑥)] = 𝜎2 ∀𝑥 ∈ 𝒳

Independence of errors
Any pair of errors 𝜀(𝑥𝑖) and 𝜀(𝑥𝑗) are independent. It’s the
same as any pair of responses 𝑌 |𝑥𝑖 and 𝑌 |𝑥𝑗 are independent.
Weaker assumption is uncorrelatedness:

𝑐𝑜𝑣[𝜀(𝑥𝑖), 𝜀(𝑥𝑗)] = 𝑐𝑜𝑣[𝑌 |𝑥𝑖, 𝑌 |𝑥𝑗 ] = 0 ∀𝑥𝑖, 𝑥𝑗 ∈ 𝒳 , 𝑖 ̸= 𝑗
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Assumptions in Regression Analysis

Normality
The errors are normally distributed for every 𝑥 ∈ 𝒳 :

𝜀(𝑥) ∼ 𝑁(0, 𝜎2) ∀𝑥 ∈ 𝒳

Equivalently:

𝑌 |𝑥 ∼ 𝑁(𝛽0 + 𝛽1𝑥, 𝜎
2) ∀𝑥 ∈ 𝒳

Under assumption of normality the independence and
uncorrelatedness of errors are equivalent

Variability of regressors
The explanatory variables must have non-zero variance. The
regression has no sense if 𝑋 is constant
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Assumptions in Regression Analysis. Illustration

The assumptions of linearity, constant variance, and normality in
simple regression are fulfilled
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Violations of Assumptions. Illustrations

Alexander Trofimov Regression Fitting Techniques 37 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Simple Linear Regression and OLS
Multiple Linear Regression

Properties of the OLS Estimator: Linearity

Assumption: linearity

The coefficients 𝛽0, 𝛽1 are linear estimators (i.e. linear functions of
the observations 𝑦1, ..., 𝑦𝑛):

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦 = 𝐵𝑦

where 𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇 is 2 × 𝑛 matrix

𝛽0 = (1 0)𝛽 = (1 0)𝐵𝑦 =
𝑛∑︁

𝑖=1

𝑏0𝑖𝑦𝑖

𝛽1 = (0 1)𝛽 = (0 1)𝐵𝑦 =

𝑛∑︁
𝑖=1

𝑏1𝑖𝑦𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑥̄
𝑛∑︀

𝑖=1
(𝑥𝑖 − 𝑥̄)2

𝑦𝑖

Derive the expression for 𝑏0𝑖!
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Properties of the OLS Estimator: Consistency

Assumptions: linearity, exogeneity of regressors

The coefficients 𝛽0, 𝛽1 are consistent estimators:

𝛽0
𝑃−→ 𝛽0, 𝛽1

𝑃−→ 𝛽1

𝑃 [|𝛽𝑗 − 𝛽𝑗 | < 𝛿] → 1 ∀𝛿 > 0 as 𝑛 → ∞, 𝑗 ∈ {0, 1}

Proof:

𝛽1 =

∑︀
(𝑥𝑖 − 𝑥̄)𝑌𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

=

∑︀
(𝑥𝑖 − 𝑥̄)(𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖)∑︀

(𝑥𝑖 − 𝑥̄)2

=

∑︀
(𝑥𝑖 − 𝑥̄)∑︀
(𝑥𝑖 − 𝑥̄)2

𝛽0 +

∑︀
(𝑥𝑖 − 𝑥̄)𝑥𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

𝛽1 +

∑︀
(𝑥𝑖 − 𝑥̄)𝜀𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

= 0 + 𝛽1 +

∑︀
(𝑥𝑖 − 𝑥̄)𝜀𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

→ 𝛽1 +
𝑐𝑜𝑣[𝑋, 𝜀]

D[𝑋]
= 𝛽1 + 0 = 𝛽1

Prove the consistency of 𝛽0!
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Properties of the OLS Estimator: Unbiasedness

Assumption: linearity

The coefficients 𝛽0, 𝛽1 are unbiased estimators:

M[𝛽0] = 𝛽0, M[𝛽1] = 𝛽1

Proof:

M[𝛽1] = M

[︂∑︀
(𝑥𝑖 − 𝑥̄)𝑌𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

]︂
=

∑︀
(𝑥𝑖 − 𝑥̄)M[𝑌𝑖]∑︀

(𝑥𝑖 − 𝑥̄)2

=

∑︀
(𝑥𝑖 − 𝑥̄)(𝛽0 + 𝛽1𝑥𝑖 + M[𝜀𝑖])∑︀

(𝑥𝑖 − 𝑥̄)2

=

∑︀
(𝑥𝑖 − 𝑥̄)∑︀
(𝑥𝑖 − 𝑥̄)2

𝛽0 +

∑︀
(𝑥𝑖 − 𝑥̄)𝑥𝑖∑︀
(𝑥𝑖 − 𝑥̄)2

𝛽1 = 0 + 𝛽1 = 𝛽1

Prove the unbiasedness of 𝛽0!
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Properties of the OLS Estimator: Efficiency

Assumptions: linearity, exogeneity of regressors, homoscedasticity,
independence of errors

The sampling variances of estimators:

D[𝛽0] =
𝜎2

∑︀
𝑥2𝑖

𝑛
∑︀

(𝑥𝑖 − 𝑥̄)2
=

𝜎2𝛼*
2𝑋

𝑛𝐷*
𝑋

D[𝛽1] =
𝜎2∑︀

(𝑥𝑖 − 𝑥̄)2
=

𝜎2

𝑛𝐷*
𝑋

Prove it!

Gauss-Markov theorem
Of all the linear unbiased estimators, the OLS estimators are the
most efficient, that is, they have the smallest sampling variance.
Under assumption of normality, moreover, they are the most
efficient among all unbiased estimators
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Properties of the OLS Estimator: Normality

Assumptions: linearity, homoscedasticity, independence of errors,
normality of errors

The coefficients 𝛽0, 𝛽1 are normally distributed random variables:

𝛽0 ∼ 𝑁

(︂
𝛽0,

𝜎2𝛼*
2𝑋

𝑛𝐷*
𝑋

)︂
, 𝛽1 ∼ 𝑁

(︂
𝛽1,

𝜎2

𝑛𝐷*
𝑋

)︂
Even if the errors 𝜀(𝑥) are not normally distributed, the
distributions of 𝛽0, 𝛽1 are approximately normal

The variance 𝜎2 of the random error 𝜀(𝑥) is usually unknown. It
can be shown that the unbiased estimate of 𝜎2 is residual variance:

𝑠2𝑒 =
1

𝑛− 2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 =

1

𝑛− 2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

and (𝑛−2)𝑆2
𝑒

𝜎2 ∼ 𝜒2(𝑛− 2), and 𝑆2
𝑒 is independent of 𝛽0 and 𝛽1
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OLS Estimator and MLE

Assumptions: linearity, homoscedasticity, independence of errors,
normality of errors

The estimates 𝛽0, 𝛽1 are maximum likelihood estimates (MLE) of
coefficients 𝛽0, 𝛽1

Statistical model:

𝜀(𝑥) ∼ 𝑁(0, 𝜎2), 𝜀(𝑥) = 𝑌 |𝑥− 𝛽0 − 𝛽1𝑥

Sample: 𝜀1, ..., 𝜀𝑛, 𝜀𝑖 = 𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖, 𝑖 = 1, 𝑛

Likelihood function:

ℒ (𝜀1, ..., 𝜀𝑛, 𝛽0, 𝛽1) =

𝑛∏︁
𝑖=1

𝑓𝜀 (𝜀𝑖|𝛽0, 𝛽1)

MLE of 𝛽0, 𝛽1 is a solution of optimization problem:

ℒ (𝜀1, ..., 𝜀𝑛, 𝛽0, 𝛽1) → max
𝛽0,𝛽1
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MLE of Simple Regression Parameters

Log-likelihood function:

ln ℒ (𝜀1, ..., 𝜀𝑛, 𝛽0, 𝛽1) =

𝑛∑︁
𝑖=1

ln 𝑓𝜀 (𝜀𝑖|𝛽0, 𝛽1) → max
𝛽0,𝛽1

ln ℒ (𝜀1, ..., 𝜀𝑛, 𝛽0, 𝛽1) =

𝑛∑︁
𝑖=1

ln

[︂
1

𝜎
√

2𝜋
exp

(︂
− 𝜀2𝑖

2𝜎2

)︂]︂

= 𝑛 ln

(︂
1

𝜎
√

2𝜋

)︂
− 1

2𝜎2

𝑛∑︁
𝑖=1

𝜀2𝑖 = 𝑐− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

{︃
𝜕 lnℒ (𝜀1,...,𝜀𝑛,𝛽0,𝛽1)

𝜕𝛽0
= 1

𝜎2

∑︀
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

𝜕 lnℒ (𝜀1,...,𝜀𝑛,𝛽0,𝛽1)
𝜕𝛽1

= 1
𝜎2

∑︀
𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

It’s the same system of linear equations like it was in OLS
Derive the MLE-estimation of 𝜎2!
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Confidence Intervals for Regression Parameters

The sampling variances of estimators:

𝑆2[𝛽0] =
𝑆2
𝑒𝛼

*
2𝑋

𝑛𝐷*
𝑋

, 𝑆2[𝛽1] =
𝑆2
𝑒

𝑛𝐷*
𝑋

Central statistic:

𝑇𝑗 =
𝛽𝑗 − 𝛽𝑗

𝑆[𝛽𝑗 ]
∼ 𝑇 (𝑛− 2), 𝑗 ∈ {0, 1}

Confidence intervals for 𝛽𝑗, 𝑗 ∈ {0, 1}:

𝑃
[︁
𝛽𝑗 − 𝑡1−𝛼/2,𝑛−2𝑆[𝛽𝑗 ] < 𝛽𝑗 < 𝛽𝑗 + 𝑡1−𝛼/2,𝑛−2𝑆[𝛽𝑗 ]

]︁
= 1 − 𝛼

where 1 − 𝛼 is a confidence level, 𝑡1−𝛼/2,𝑛−2 is (1 − 𝛼/2)-th
quantile of Student’s distribution with 𝑛− 2 degrees of freedom
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Confidence and Prediction Intervals for Regression Function

(1 − 𝛼)-confidence interval for conditional expectation 𝜙(𝑥):

𝜙(𝑥) ∈

[︃
𝛽0 + 𝛽1𝑥∓ 𝑡1−𝛼/2,𝑛−2𝑆𝑒

√︃
1

𝑛
+

(𝑥− 𝑥̄)2

𝑛𝐷*
𝑋

]︃
(1 − 𝛼)-prediction interval for 𝑌 |𝑥:

𝑌 |𝑥 ∈

[︃
𝛽0 + 𝛽1𝑥∓ 𝑡1−𝛼/2,𝑛−2𝑆𝑒

√︃
1 +

1

𝑛
+

(𝑥− 𝑥̄)2

𝑛𝐷*
𝑋

]︃
Confidence interval gives a range of values for an unknown
conditional expectation M[𝑌 |𝑥]

Prediction interval is an estimate of an interval in which a future
observation 𝑌 |𝑥 will fall
Confidence interval is always narrower than the corresponding
prediction interval
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Confidence and Prediction Intervals. Illustration 1

Confidence interval is for conditional expectation 𝜙(𝑥) = M[𝑌 |𝑥],
prediction interval is for a single value of 𝑌 |𝑥

Alexander Trofimov Regression Fitting Techniques 47 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Simple Linear Regression and OLS
Multiple Linear Regression

Confidence and Prediction Intervals. Illustration 2

The further 𝑥 is from 𝑥̄, the wider the intervals will be

If any of the statistical assumptions is violated, then the confidence
intervals and prediction intervals may be invalid as well. This is why
it’s important to check them by examining the residuals, etc.
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Single Parameter Tests

Statistical hypothesis:

𝐻0 : 𝛽𝑗 = 0 vs 𝐻 ′ : 𝛽𝑗 ̸= 0, 𝑗 ∈ {0, 1}
Test statistic:

𝑍𝑗 =
𝛽𝑗

𝑆[𝛽𝑗 ]
, 𝑍𝑗 |𝐻0 ∼ 𝑇 (𝑛− 2), 𝑗 ∈ {0, 1}
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Multiple Linear Regression

In multiple linear regression the relationship between response 𝑌
and explanatory variables 𝑋1, ..., 𝑋𝑘 is modelled as

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑘𝑥𝑘 + 𝜀(𝑥) = 𝑥𝛽 + 𝜀(𝑥)

where 𝑥 = (1, 𝑥1, ..., 𝑥𝑘) is a vector of regressors, 𝛽 = (𝛽0, ..., 𝛽𝑘)𝑇

is a vector of parameters to be estimated using the data

The regression function 𝜙(𝑥) is assumed to be linear:

𝜙(𝑥) = M[𝑌 |𝑥] = 𝑥𝛽

The regression errors:

𝜀𝑖 = 𝑦𝑖 − 𝜙(𝑥𝑖) = 𝑦𝑖 − 𝑥𝑖𝛽, 𝑖 = 1, ..., 𝑛

where 𝑥𝑖 = (1, 𝑥1𝑖, ..., 𝑥𝑘𝑖) is a vector of regressors for 𝑖-th
observation
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OLS for Multiple Linear Regression

Least-squares criterion:

𝐸(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖))
2 =

1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2 → min
𝛽

The minimum is found by setting the gradient to zero:

𝜕𝐸(𝛽0, ..., 𝛽𝑗)

𝜕𝛽𝑗
= 0, 𝑗 = 0, 𝑘

The system of normal equations:

𝑋𝑇𝑋𝛽 = 𝑋𝑇 𝑦

where 𝑦 = (𝑦1, ..., 𝑦𝑛)𝑇 is vector of responses, 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑥11 ... 𝑥𝑘1
... ... ... ...
1 𝑥1𝑛 ... 𝑥𝑘𝑛

⎞⎠
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Multiple Linear Regression. Illustration
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Parameters Estimation

The closed-form solution:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦

The predicted responses:

𝑦 = 𝑋𝛽 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 𝑦 = 𝐻𝑦

where matrix 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 is called as projection matrix,
or hat matrix

The predicted responses 𝑦 are linear functions of observed
responses 𝑦

The vector of residuals:

𝜀 = 𝑦 − 𝑦 = 𝑦 −𝐻𝑦 = (𝐼 −𝐻)𝑦

where 𝜀 = (𝜀1, ..., 𝜀𝑛)𝑇 , 𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖, 𝑖 = 1, 𝑛
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Covariance Matrix of Regression Parameter Estimates

It can be shown that the covariance matrix of estimates 𝛽:

𝐶𝛽 = 𝑐𝑜𝑣[𝛽] = 𝜎2(𝑋𝑇𝑋)−1

where 𝜎2 is the variance of the random error, 𝜎2 = D[𝜀(𝑥)]

It can be shown that the unbiased estimate of 𝜎2 is the variance of
residuals (residual variance):

𝑠2𝑒 =
1

𝑛− 𝑘 − 1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 =

1

𝑛− 𝑘 − 1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2

and (𝑛−𝑘−1)𝑆2
𝑒

𝜎2 ∼ 𝜒2(𝑛− 𝑘− 1), and 𝑆2
𝑒 is independent of 𝛽0, ..., 𝛽𝑘

Estimate of covariance matrix 𝐶𝛽:

𝐶𝛽 = 𝑠2𝑒(𝑋
𝑇𝑋)−1
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Confidence Intervals for Regression Parameters

The sampling variances of estimators:

𝑆2[𝛽𝑗 ] = 𝑐𝑗𝑗 , 𝑗 = 0, 𝑘

where 𝑐𝑗𝑗 is the 𝑗-th diagonal element of matrix 𝐶𝛽

Central statistic:

𝑇𝑗 =
𝛽𝑗 − 𝛽𝑗

𝑆[𝛽𝑗 ]
∼ 𝑇 (𝑛− 𝑘 − 1), 𝑗 = 0, 𝑘

Confidence intervals for 𝛽𝑗, 𝑗 = 0, 𝑘:

𝑃
[︁
𝛽𝑗 − 𝑡1−𝛼/2,𝑛−𝑘−1𝑆[𝛽𝑗 ] < 𝛽𝑗 < 𝛽𝑗 + 𝑡1−𝛼/2,𝑛−𝑘−1𝑆[𝛽𝑗 ]

]︁
= 1−𝛼

where 1 − 𝛼 is a confidence level, 𝑡1−𝛼/2,𝑛−𝑘−1 is (1 − 𝛼/2)-th
quantile of 𝑇 (𝑛− 𝑘 − 1)-distribution
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Confidence and Prediction Intervals for Regression Function

(1 − 𝛼)-confidence interval for conditional expectation 𝜙(𝑥):

𝜙(𝑥) ∈
[︂
𝑥𝛽 ∓ 𝑡𝛼/2,𝑛−𝑘−1𝑆𝑒

√︁
𝑥(𝑋𝑇𝑋)−1𝑥𝑇

]︂
(1 − 𝛼)-prediction interval for 𝑌 |𝑥:

𝑌 |𝑥 ∈
[︂
𝑥𝛽 ∓ 𝑡𝛼/2,𝑛−𝑘−1𝑆𝑒

√︁
1 + 𝑥(𝑋𝑇𝑋)−1𝑥𝑇

]︂
Confidence interval gives a range of values for an unknown
conditional expectation M[𝑌 |𝑥]

Prediction interval is an estimate of an interval in which a future
observation 𝑌 |𝑥 will fall
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Prediction Intervals for Multiple Regression. Illustration
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Using Features in Multiple Linear Regression

The relationship between response 𝑌 and explanatory variables
𝑋1, ..., 𝑋𝑘 can be modelled as

𝑌 |𝑥 = 𝛽0 + 𝛽1𝑓1(𝑥) + ... + 𝛽𝑚𝑓𝑚(𝑥) + 𝜀(𝑥) = 𝑓(𝑥)𝛽 + 𝜀(𝑥)

where 𝑓(𝑥) = (1, 𝑓1(𝑥), ..., 𝑓𝑚(𝑥)) is a vector of features

The system of normal equations in OLS:

𝑋𝑇𝑋𝛽 = 𝑋𝑇 𝑦

where 𝑦 = (𝑦1, ..., 𝑦𝑛)𝑇 is vector of responses, 𝛽 = (𝛽0, ..., 𝛽𝑚)𝑇 is
a vector of parameters, 𝑋 is design matrix:

𝑋 =

⎛⎝ 1 𝑓1(𝑥1) ... 𝑓𝑚(𝑥1)
... ... ... ...
1 𝑓1(𝑥𝑛) ... 𝑓𝑚(𝑥𝑛)

⎞⎠
The solution and statistical inference are the same as for multiple
linear regression
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Multiple Linear Regression. Examples

Example 1. Polynomial regression

𝜙(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2

𝑓(𝑥) = (1, 𝑥, 𝑥2)

𝑋 =

⎛⎝ 1 𝑥1 𝑥21
... ... ...
1 𝑥𝑛 𝑥2𝑛

⎞⎠
Example 2. Linear regression with mixed term

𝜙(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2

𝑓(𝑥) = (1, 𝑥1, 𝑥2, 𝑥1𝑥2)

𝑋 =

⎛⎝ 1 𝑥11 𝑥21 𝑥11𝑥21
... ... ... ...
1 𝑥1𝑛 𝑥2𝑛 𝑥1𝑛𝑥2𝑛

⎞⎠
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Polynomial Regression. Illustration 1
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Polynomial Regression. Illustration 2
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Statistical Tests in Multiple Linear Regression

I. Single parameter tests:

𝐻0 : 𝛽𝑗 = 0 vs 𝐻 ′ : 𝛽𝑗 ̸= 0, 𝑗 ∈ {0, 𝑘}
Test statistic:

𝑍𝑗 =
𝛽𝑗

𝑆[𝛽𝑗 ]
, 𝑍𝑗 |𝐻0 ∼ 𝑇 (𝑛− 2), 𝑗 ∈ {0, 𝑘}

II. Test for significance of regression:

𝐻0 : 𝛽1 = ... = 𝛽𝑘 = 0 vs 𝐻 ′ : 𝛽2
1 + ... + 𝛽2

𝑘 > 0

Test statistic:

𝑍 =
𝑅2/𝑘

(1 −𝑅2)/(𝑛− 𝑘 − 1)
, 𝑍|𝐻0 ∼ 𝐹 (𝑘, 𝑛− 𝑘 − 1)

where 𝑅2 is the coefficient of determination:

𝑅2 = 1 −
∑︀

(𝑦𝑖 − 𝑦𝑖)
2∑︀

(𝑦𝑖 − 𝑦)2
= 1 − (𝑛− 𝑘 − 1)𝑠2𝑒

𝑛𝐷*
𝑌
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Importance of Assumptions in Regression Analysis

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

Assumptions in linear regression analysis:

Linearity
Exogeneity of regressors
Homoscedasticity
Independence of errors
Normality
Variability of regressors

If these assumptions are violated, then the statistical inference may
be invalid
The assumptions should be tested in exploratory data analysis or
after fitting the regression model to the data
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The Problem of Heteroscedasticity

Heteroscedasticity means that conditional variance of the outcome
is not constant:

D[𝑌 |𝑥] ̸= 𝑐𝑜𝑛𝑠𝑡 ⇔ D[𝜀(𝑥)] ̸= 𝑐𝑜𝑛𝑠𝑡

Why heretoscedasticity is not desirable while building the
regression model?

The OLS model is no longer efficient, i.e. it is not guaranteed
to be the best unbiased linear estimator for your data
The standard errors of the model’s parameters become
incorrect, hence, the confidence intervals, prediction intervals
and test statistics become wrong

Questions:
How to identify heteroscedasticity?
How to fix heteroscedasticity?
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Heteroscedasticity. Illustration

Identification of heteroscedasticity is one of the tasks of the
regression diagnostics
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Statistical Tests for Heteroscedasticity

Heteroscedasticity can be identified visually on scatter plots or by
using statistical tests

Statistical tests for heteroscedasticity:

White test
Breush-Pagan test
Park test
Glejser test
Goldfeld-Quandt test
...

The statistical tests are usually applied to the regression errors
𝜀1, ..., 𝜀𝑛, the null hypothesis:

𝐻0 : D[𝜀1] = ... = D[𝜀𝑛] = 𝜎2
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Heteroscedasticity of Residuals. Illustration 1

Idea: If the sample 𝜀1, ..., 𝜀𝑛 is heteroscedastic, then the squared
sample 𝜀21, ..., 𝜀

2
𝑛 (or |𝜀1|, ..., |𝜀𝑛|) has significant linear regression on

predicted response 𝑦 and/or explanatory variables 𝑥1, ..., 𝑥𝑘
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Heteroscedasticity of Residuals. Illustration 2
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Approaches to Fix Heteroscedasticity

How to fix heteroscedasticity?
Log-transformation of the response 𝑦
It will dampen down some of the heteroscedasticity, then build
OLS regression of log 𝑦

Other transformations can also be applied

Weighted least squares approach to fit regression model
Include extra non-negative constants (weights), associated
with each data point, into the fitting criterion

Heteroscedasticity-consistent standard error estimators
Provides better estimates of the covariance matrix of
regression parameters

Hayes A.F., Cai L. Using heteroskedasticity-consistent standard error estimators in OLS
regression: An introduction and software implementation // Behavior research methods. 2007,
39(4), 709-722.
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Weighted Least Squares

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

Weighted Least Squares (WLS) criterion:

𝐸(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝑥𝑖𝛽)2 → min
𝛽

where 𝑤𝑖 is a scale factor (weight) of 𝑖-th observation, 𝑖 = 1, 𝑛

The system of normal equations in matrix form:

𝑋𝑇𝑊𝑋𝛽 = 𝑋𝑇𝑊𝑦

The solution:
𝛽 = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑦

where 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1, ..., 𝑤𝑛) is a diagonal weight matrix

How to choose weights 𝑤1, ..., 𝑤𝑛?
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Transformation to Homoscedasticity

Idea: choose weights that should transform the response variances
to a constant value

𝑌𝑖 = 𝑥𝑖𝛽 + 𝜀𝑖 ⇒ D[𝑌𝑖] = D[𝑥𝑖𝛽 + 𝜀𝑖] = D[𝜀𝑖] = 𝜎2
𝑖 , 𝑖 = 1, 𝑛

𝑌𝑖
𝜎𝑖

=
𝑥𝑖
𝜎𝑖
𝛽 +

𝜀𝑖
𝜎𝑖

𝑌 ′
𝑖 = 𝑥′𝑖𝛽 + 𝜀′𝑖

where
𝑌 ′
𝑖 =

𝑌𝑖
𝜎𝑖
, 𝑥′𝑖 =

𝑥𝑖
𝜎𝑖
, 𝜀′𝑖 =

𝜀𝑖
𝜎𝑖

The transformed model is homoscedastic now:

𝑌 ′
𝑖 = 𝑥′𝑖𝛽 + 𝜀′𝑖 ⇒ D[𝑌 ′

𝑖 ] = D[𝜀′𝑖] = 1, 𝑖 = 1, 𝑛

Alexander Trofimov Regression Fitting Techniques 71 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Weighted Least Squares
Robust Regression Techniques
Non-linear Regression

Weights in WLS

Let’s apply OLS to the transformed model:

𝛽 = (𝑋 ′𝑇𝑋 ′)−1𝑋 ′𝑇 𝑦′

where
𝑋 ′ = Σ−1𝑋, 𝑦′ = Σ−1𝑦

and Σ = 𝑑𝑖𝑎𝑔(𝜎1, ..., 𝜎𝑛)

𝛽 = (𝑋𝑇Σ−1Σ−1𝑋)−1𝑋𝑇Σ−1Σ−1𝑦

Hence, the weight matrix should be

𝑊 = Σ−1Σ−1 = (Σ−1)2

and the individual weights of observations should be equal to the
reciprocals of residual variances:

𝑤𝑖 =
1

𝜎2
𝑖

, 𝑖 = 1, 𝑛
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Approaches to choose weights

In practice, the response variances 𝜎2
1, ...𝜎

2
𝑛 are unknown. In this

case:

Assume some model for weights based on visual analysis or
using some extra knowledge, e.g. 𝑤𝑖 = 1

𝑥𝑖
, 𝑖 = 1, 𝑛

If your data occur only at discrete levels of 𝑋, estimate the
variance directly at each level
For continuous predictors, it’s not recommended to use
estimates of response variances due to sensitivity to outliers
and randomness, especially for few data
Build OLS regression to get the residuals 𝜀1, ..., 𝜀𝑛, and then
regress 𝜀2 or |𝜀| on 𝑥 or 𝑦. The predicted values of this
regression model can be used instead of estimates of response
variances

It’s good practice to try various approaches and choose the best
one based on, for instance, the distribution of residuals
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WLS. Illustration 1
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WLS. Illustration 2
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Weighted Least Squares. Notes

In WLS, it’s assumed that covariance matrix of errors is
diagonal 𝑐𝑜𝑣[𝜀] = 𝑑𝑖𝑎𝑔(𝜎2

1, ..., 𝜎
2
𝑛)

To apply WLS, we need to know the weights 𝑤1, ..., 𝑤𝑛

If the weights are the reciprocals of residual variances, then
WLS overcomes the issue of non-constant error variances
𝜎2
1, ..., 𝜎

2
𝑛

Points with low variance will be given higher weights and
points with higher variance are given lower weights
WLS solution is the same as the OLS solution for the
transformed model
WLS gives us an easy way to remove some observations from a
model by setting their weights equal to 0
We can also downweight outliers or influential points to reduce
their impact on the overall model
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Generalized Least Squares

In generalized least squares (GLS) it’s assumed that residual
covariance matrix 𝑐𝑜𝑣[𝜀] may be non-diagonal

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

GLS criterion:

𝐸(𝛽) = (𝑦 −𝑋𝛽)𝑇𝑊 (𝑦 −𝑋𝛽) → min
𝛽

where 𝑊 is non-diagonal weight matrix. If 𝑊 = 𝑐𝑜𝑣[𝜀]−1, then GLS
solution is the same as the OLS solution of the transformed model:

𝑌 ′
𝑖 = 𝑥′𝑖𝛽 + 𝜀′𝑖, 𝑖 = 1, 𝑛

where
𝑋 ′ = Σ−1𝑋, 𝑦′ = Σ−1𝑦, 𝜀′ = Σ−1𝜀

and Σ is a square root of covariance matrix: 𝑐𝑜𝑣[𝜀] = ΣΣ𝑇
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Whitening Transformation. Illustration

If the random vector 𝜀 = (𝜀1, ..., 𝜀𝑛)𝑇 , M[𝜀] = 0, has a covariance
matrix 𝑐𝑜𝑣[𝜀] = ΣΣ𝑇 , then the transformation

𝜀′ = Σ−1𝜀

is called as whitening transformation. The transformed variables
𝜀′1, ..., 𝜀

′
𝑛 are uncorrelated unit-variance random variables

GLS regression = error whitening + OLS regression
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Generalized Least Squares. Notes

WLS is a particular case of GLS where the error covariance
matrix 𝑐𝑜𝑣[𝜀] is assumed to be diagonal
To apply GLS, we need to know all covariances 𝑐𝑜𝑣[𝜀𝑖, 𝜀𝑗 ],
𝑖, 𝑗 = 1, 𝑛

In practice, the error covariance matrix 𝑐𝑜𝑣[𝜀] is unknown
It’s not recommended to use estimates of error covariance
matrix due to sensitivity to outliers and randomness, the better
choice is to assume some model for covariances with low
number of parameters
GLS solution is the same as the OLS solution of the
transformed model (with whitened errors)
The GLS estimator is unbiased, consistent, efficient and
asymptotically normal since OLS is applied to data with
homoscedastic uncorrelated errors and the Gauss–Markov
theorem applies
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Robust Regression Techniques

In OLS, WLS and GLS it’s assumed that the response errors follow
a normal distribution, and that extreme values are rare. But in real
data, extreme values called outliers do occur

Outliers have a large influence on the LS fit because squaring the
residuals magnifies the effects of these extreme data points. To
minimize their influence, robust regression techniques can be used:

Least absolute residuals (LAR) method
Iteratively reweighted least-squares (IRLS) algorithm
RANSAC regression
Tries to separate data into outliers and inliers and fits the model on
the inliers
Theil-Sen Regression
Involves fitting multiple regression models on subsets of the training
data and combining the coefficients
...
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Least Absolute Residuals Regression

Idea: use 𝐿1-norm in loss function

Linear regression model:

𝑌 |𝑥 = 𝑥𝛽 + 𝜀(𝑥)

Least Absolute Residuals (LAR) criterion:

𝐸(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑥𝑖𝛽| → min
𝛽

LAR regression does not have a closed-form solution, iterative
training approach is required (based on simplex method, descend
methods, etc.)

There are possibly multiple solutions of LAR regression, they
depend on the initial point and search algorithm in the optimization
procedure
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WLS for Robust Regression

Idea: minimize a weighted sum of squares, where the weight given
to each data point depends on how far it is from the fitted line

How to measure the distance of an observation to the fitted
line?

The euclidean distance is not the best metric, since the residual
variance is not constant across the values of regressors
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Variances of Estimated Residuals

The estimated residuals:

𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖 = 𝑦𝑖 − 𝑥𝑖𝛽, 𝑖 = 1, 𝑛

where 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦 is OLS-estimate of 𝛽

Under the assumptions of homoscedasticity and uncorrelatedness of
errors:

D[𝜀𝑖] = D[𝑌 |𝑥𝑖] = 𝜎2, 𝑐𝑜𝑣[𝜀𝑖, 𝜀𝑗 ] = 0 ∀𝑖, 𝑗 = 1, 𝑛, 𝑖 ̸= 𝑗

the variances of estimated residuals 𝜀 = (𝜀1, ..., 𝜀𝑛)𝑇 :

D[𝜀] = D[𝑌 −𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌 ] = (𝐼 −𝐻)D[𝑌 ] = (𝐼 −𝐻)𝜎2

D[𝜀𝑖] = 𝜎2(1 − ℎ𝑖), 𝑖 = 1, 𝑛

where 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 is hat matrix and ℎ𝑖 is its 𝑖-th diagonal
element called as leverage of observation 𝑥𝑖, 𝑖 = 1, 𝑛
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Standardized Residuals

Under the assumption of normality

𝜀𝑖 ∼ 𝑁
(︀
0, 𝜎2(1 − ℎ𝑖)

)︀
, 𝑖 = 1, 𝑛

As soon as 𝜎 is unknown, we use its unbiased estimate 𝑆𝑒:

𝑆2
𝑒 =

1

𝑛− 𝑘 − 1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 =

1

𝑛− 𝑘 − 1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2

The standardized residuals:

𝑡𝑖 =
𝜀𝑖

𝑆[𝜀𝑖]
=

𝜀𝑖

𝑆𝑒

√
1 − ℎ𝑖

, 𝑡𝑖 ∼ 𝑇 (𝑛− 𝑘 − 1), 𝑖 = 1, 𝑛

The value of 𝑡𝑖 (also called as studentized residual) is a better
metric of how far the 𝑖-th observation is from the fitted line
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Iteratively Reweighted Least-Squares (IRLS) Algorithm

Step 1. Set weight matrix to be identical, 𝑊 = 𝐼

Step 2. Fit the model by WLS
Step 3. Compute standartized residuals 𝑡1, ..., 𝑡𝑛 or robust
standartized residuals 𝑡′1, ..., 𝑡

′
𝑛:

𝑡′𝑖 =
𝜀𝑖

𝑆′
𝑒

√
1 − ℎ𝑖

, 𝑖 = 1, 𝑛

where 𝑆′
𝑒 = 𝑚𝑒𝑑(|𝜀1|,...,|𝜀𝑛|)

0.675 is the robust standard deviation

Step 4. Compute the robust weights as a function of 𝑡′. The
bisquare weights:

𝑤𝑖 =

{︃(︀
1 − (𝑡′𝑖/𝑐𝐵)2

)︀2
, |𝑡′𝑖| < 𝑐𝐵,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(𝑐𝐵 = 4.685)

Step 5. Go to step 2 until the fit converges
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Bisquare Weight Regression
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Robust Regression Techniques. Illustration

For most cases, the bisquare weight method is preferred over LAR
because it simultaneously seeks to find a curve that fits the bulk of
the data using the usual LS approach, and it minimizes the effect of
outliers
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Non-linear Regression Model

Non-linear regression model:

𝑌 |𝑥 = 𝜙(𝑥, 𝛽) + 𝜀(𝑥)

where 𝛽 = (𝛽0, ..., 𝛽𝑘)𝑇 is a vector of parameters and 𝜙(𝑥, 𝛽) is a
non-linear function of 𝛽0, ..., 𝛽𝑘

Criterion:

𝐸(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))2 → min
𝛽

Examples:

𝜙(𝑥, 𝛽) =
𝛽0𝑥

𝛽1 + 𝑥

𝜙(𝑥, 𝛽) = 𝛽0 + 𝛽1𝑥
𝛽2

𝜙(𝑥, 𝛽) = 𝛽0 sin(𝛽1 + 𝛽2𝑥)
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Non-linear Least Squares

Non-linear models are more difficult to fit than linear models
because the coefficients 𝛽0, ..., 𝛽𝑘 cannot be estimated using simple
matrix techniques. Instead, iterative training techniques are used:

Step 1. Assume initial estimate for each coefficient 𝛽0, ..., 𝛽𝑘
Step 2. Produce the fitted curve 𝜙(𝑥, 𝛽) for the current set of
coefficients 𝛽
Step 3. Adjust the coefficients 𝛽 by an optimization algorithm
and determine whether the fit improves
Step 4. Iterate the process by returning to step 2 until the fit
reaches the specified convergence criteria

The class of parametric non-linear regression functions must be
specified for non-linear least squares

If you do not achieve a reasonable fit, you should experiment with
different starting points, optimization algorithm and convergence
criteria

Weights and robust fitting can be used for non-linear models
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Transformation to Linearity

In particular cases the non-linear model can be transformed to
linearity, for example:

𝜙(𝑥, 𝛽0, 𝛽1) = 𝛽0𝑒
𝛽1𝑥

ln𝜙(𝑥, 𝛽0, 𝛽1) = ln𝛽0 + 𝛽1𝑥

𝜙′(𝑥, 𝛽′
0, 𝛽

′
1) = 𝛽′

0 + 𝛽′
1𝑥

where 𝜙′(𝑥, 𝛽0, 𝛽1) = ln𝜙(𝑥, 𝛽0, 𝛽1), 𝛽′
0 = ln𝛽0, 𝛽′

1 = 𝛽1

It’s a linear model and OLS can be used to estimate 𝛽′ = (𝛽′
0, 𝛽

′
1)

𝑇 :

𝛽′ = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦′

where 𝑦′ = (ln 𝑦1, ..., ln 𝑦𝑛)𝑇 and 𝑋 =

⎛⎝ 1 𝑥1
... ...
1 𝑥𝑛

⎞⎠
The original parameters 𝛽0 = 𝑒𝛽

′
0 , 𝛽1 = 𝛽′

1
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Transformation to Linearity. Illustration 1

Non-linear regression function: 𝜙(𝑥, 𝛽0, 𝛽1) = 𝛽0𝑒
𝛽1𝑥

Transformed to linearity: ln𝜙(𝑥, 𝛽0, 𝛽1) = ln𝛽0 + 𝛽1𝑥

What is wrong with this regression?
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Transformation to Linearity. Illustration 2

Non-linear regression function: 𝜙(𝑥, 𝛽0, 𝛽1) = 𝛽0𝑒
𝛽1𝑥

Why the regressions are different?
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Transformation to Linearity. Illustration 3

Symmetric measurement errors on the original scale have become
asymmetric on the log scale

Linear fit on log scale is very much affected by an outlier
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Transformation to Linearity. Illustration 4

Let’s remove the outlier

The outlier is removed, but the regressions are still different. Which
one is “right”?
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Non-linear Regression or Transformation to Linearity?

Non-linear model 1: 𝑌 |𝑥 = 𝛽0𝑒
𝛽1𝑥 + 𝜀(𝑥)

ln𝑌 |𝑥 = ln
(︁
𝛽0𝑒

𝛽1𝑥 + 𝜀(𝑥)
)︁

If the original noise 𝜀(𝑥) is additive, the log-transformation is
inappropriate

Non-linear model 2: 𝑌 |𝑥 = 𝛽0𝑒
𝛽1𝑥𝜀(𝑥)

ln𝑌 |𝑥 = 𝛽′
0 + 𝛽′

1𝑥 + 𝜀′(𝑥)

where 𝛽′
0 = ln𝛽0, 𝛽′

1 = 𝛽1, 𝜀′(𝑥) = ln 𝜀(𝑥)

𝜀′(𝑥) ∼ 𝑁(0, 𝜎2) ⇔ 𝜀(𝑥) ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)

If the original noise 𝜀(𝑥) is multiplicative and log-normally
distributed, then log-transformation results to a linear model with
additive normal noise

Alexander Trofimov Regression Fitting Techniques 95 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Weighted Least Squares
Robust Regression Techniques
Non-linear Regression

Non-linear Regression vs Transformation to Linearity. Illustration

(A) additive normal error, (B) multiplicative lognormal error
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Generalized Linear Models

Particular case of non-linear models is generalized linear models
(GLM). The GLMs allow the linear model to be related to the
response variable via a non-linear link function
Linear models:

For each 𝑥, the response 𝑌 |𝑥 has a normal distribution
A coefficient vector 𝛽 defines a linear combination 𝑥𝛽 of the
predictors 𝑥
The regression function is linear: M[𝑌 |𝑥] = 𝑥𝛽

Generalized linear models:
For each 𝑥, the response 𝑌 |𝑥 has a distribution that can be
normal, binomial, Poisson, etc.
A coefficient vector 𝛽 defines a linear combination 𝑥𝛽 of the
predictors 𝑥
The transformed regression function is linear:
𝑔(M[𝑌 |𝑥]) = 𝑥𝛽, where 𝑔(𝜇) is the link function

Alexander Trofimov Regression Fitting Techniques 97 / 107



Statistical Models and Regression
Ordinary Least Squares

Other Fitting Techniques

Weighted Least Squares
Robust Regression Techniques
Non-linear Regression

GLM Fitting Pipeline

Step 1. Prepare data
Specify predictors 𝑥 and response variable 𝑦

Step 2. Specify distribution of response variable 𝑌 |𝑥
Binomial, Poisson, gamma, etc.

Step 3. Specify link function 𝑓(𝜇)
Logit, probit, log-log, etc.

Step 4. Specify the linear model
With or without intercept, select features, etc.

Step 5. Choose fitting method
OLS, WLS, etc.

Step 6. Fit model to data

Step 7. Examine quality of the fitted model
Analysis of residuals, statistical tests, cross-validation
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GLM Example. Illustration 1

The predictor 𝑥 is car’s weight, and the response variable 𝑦 is the
proportion of cars of various weights that fail a mileage test

The scatterplot 𝑦 vs 𝑥
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GLM Example. Illustration 2

Let’s build the linear model: 𝜙(𝑥) = 𝛽0 + 𝛽1𝑥

Problems:
The line predicts proportions less than 0 and greater than 1
The proportions are not normally distributed, since they are
necessarily bounded. This violates one of the assumptions required
for fitting a simple linear regression model
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GLM Example. Illustration 3

Let’s build the linear model: 𝜙(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3

Problems:

The fitted proportion starts to decrease as weight goes above 4000;
in fact it will become negative for larger weight values
The assumption of a normal distribution is still violated
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GLM Example. Choosing the Link Function

It’s reasonable to assume that the failure counts came from a
binomial distribution, with a probability parameter 𝑝 that increases
with weight

So, the distribution 𝑌 |𝑥 should be binomial (up to a multiplier)

Let’s build GLM: 𝑔(𝜙(𝑥)) = 𝛽0 + 𝛽1𝑥 with logit link function

𝑔(𝜇) = ln

(︂
𝜇

1 − 𝜇

)︂
, 0 < 𝜇 < 1

Logit function limits the predicted proportions to the range (0, 1)
and it’s appropriate for the binomial distribution of the responses

Inverse logit function is a logistic function: 𝑔−1(𝑧) = 1
1+𝑒−𝑧

The regression function:

𝜙(𝑥) = 𝑔−1(𝛽0 + 𝛽1𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
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GLM Example. Choosing the Link Function

Other link functions can also be choosen (e.g., probit)
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GLM Example. Illustration 4

GLM: 𝑔(𝜙(𝑥)) = 𝛽0 + 𝛽1𝑥, where 𝑔(𝜇) = ln
(︁

𝜇
1−𝜇

)︁
and 𝑌 |𝑥 has

binomial distribution

The fitted proportions asymptote to zero and one as weight becomes
small or large
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Neural Network Regression

One more particular case of non-linear models is neural network
regression model:

𝑌 |𝑥 = 𝜙(𝑥, 𝛽) + 𝜀(𝑥)

where 𝛽 = (𝛽0, ..., 𝛽𝑘)𝑇 is a vector of parameters and 𝜙(𝑥, 𝛽) is a
neural network function, non-linear by 𝑥 and parameters 𝛽0, ..., 𝛽𝑘

The function 𝜙(𝑥, 𝛽) has a specific form, it’s a multiple composition
of simple non-linearities (like logistic functions, gaussians etc.)

The number 𝑘 of parameters to estimate can be very high, up to
thousands or even millions

OLS criterion:

𝐸(𝛽) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝛽))2 → min
𝛽
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Neural Network Regression. Example

1

2

3

4

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑥 𝑦

Model of the neuron:

𝑦 = 𝑓

⎛⎝ 𝑀∑︁
𝑗=1

𝑤𝑗𝑥𝑗

⎞⎠
𝑥1, ..., 𝑥𝑀 are neuron’s inputs
𝑦 is neuron’s output
𝑓(·) is neuron’s transfer function

The regression function:

𝜙(𝑥) = 𝑓4 (𝑤4𝑓1(𝑤1𝑥) + 𝑤5𝑓2(𝑤2𝑥) + 𝑤6𝑓3(𝑤3𝑥))

The OLS training criterion:

𝐸(𝑤1, ..., 𝑤6) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖, 𝑤1, ..., 𝑤6))
2 → min

𝑤1,...,𝑤6
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Summary

Types of regression models:
Simple linear regression model
Multiple linear regression model
Polynomial regression, exponential regression, etc.
Non-linear regression models

Generalized linear models (GLM)
Neural network regression models
...

Types of fitting techniques:
Ordinary least squares (OLS)
Weighted least squares (WLS)
Generalized least squares (GLS)
Robust fitting techniques (LAR, IRLS, etc.)
Non-linear least squares
...
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