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Objects and Responses

𝒳 — instance domain
𝒴 — response domain
𝐹 : 𝒳 → 𝒴 — unknown mapping (target function)
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Features

𝑓𝑗 : 𝒳 → 𝐷𝑗 — 𝑗-th feature
𝐷𝑗 — 𝑗-th feature domain, 𝑗 = 1, ...,𝑀

Types of features:

𝐷𝑗 = {0, 1} — binary feature 𝑓𝑗

|𝐷𝑗 | < ∞ — nominal (categorical) feature 𝑓𝑗

|𝐷𝑗 | < ∞, 𝐷𝑗 is ordered — ordinal feature 𝑓𝑗

𝐷𝑗 ⊆ R — real-valued feature 𝑓𝑗

𝑥 ∈ 𝒳 — some object from 𝒳

𝑓(𝑥) = (𝑓1(𝑥), ..., 𝑓𝑀 (𝑥)) — feature vector of object 𝑥

𝑓(𝑥) ∈ 𝐷1 × ...×𝐷𝑀
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Types of Responses

Regression:
𝒴 = R or 𝒴 = R𝐿

Classification:
𝒴 = {−1, 1} or 𝒴 = {0, 1} — binary classification
𝒴 = {1, ...,𝐾} — multiclass classification
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Supervised Learning. Problem Statement

𝒳 — instance domain
𝒴 — response domain
𝐹 : 𝒳 → 𝒴 — target function (unknown)

Given:
𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — available data sample
𝑥(1), ..., 𝑥(𝑛) ∈ 𝒳 — set of instances
𝑦(1), ..., 𝑦(𝑛) ∈ 𝒴 — set of responses
𝑦(𝑖) = 𝐹 (𝑥(𝑖)), 𝑖 = 1, ..., 𝑛

Find out:
ℎ : 𝒳 → 𝒴 — estimation of 𝐹 (hypothesis)

Questions:

What does “estimation” mean?
How to construct ℎ?
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Learning Algorithm

Definition
Learning algorithm 𝜇 is a mapping of arbitrary data sample
𝒟 ∈ (𝒳 × 𝒴 )𝑛 to hypothesis ℎ ∈ ℋ :

𝜇 : (𝒳 × 𝒴 )𝑛 → ℋ ,

where ℋ is a given domain in functional space 𝒳 → 𝒴
(hypothesis domain, class of models)

Learning algorithm 𝜇
𝒟 ℎ

ℎ
𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

Examples of hypotheses domains ℋ :
ℋ = {ℎ : ℎ(𝑥) =

∑︀𝑀
𝑗=1 𝛽𝑗𝑓𝑗(𝑥)}, 𝒴 = R

ℋ = {ℎ : ℎ(𝑥) = 𝑠𝑖𝑔𝑛
∑︀𝑀

𝑗=1 𝛽𝑗𝑓𝑗(𝑥)}, 𝒴 = {−1, 1}
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Inductive Learning

The aim of machine learning is rarely to replicate the data from 𝒟
but the prediction for new cases

Induction is inference from particular cases to the general case

The hypothesis ℎ is inductive because it is assumed to approximate
𝐹 well over unseen examples (even though it is only derived from
the given data sample)

Why the model learned on the data from 𝒟 will predict
responses for new cases accurately?

Learning algorithm 𝜇 solves ill-posed problem where the data by
itself is not sufficient to reconstruct the target function 𝐹

So because learning is ill-posed we should make some extra
assumptions to have a unique solution with the data we have
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Inductive Bias

Definition
Inductive bias of the learning algorithm is the set of assumptions
that makes ill-posed machine learning problem to have unique
solution

Inductive bias is not to be confused with statistical bias. Unlike
statistical bias, which is a numerical value, inductive bias is a set of
assumptions

We introduce inductive bias when we assume a class of hypotheses
ℋ that can be generated by learning algorithm. That is to say, we
define a family of models but let the data determine which of these
models is most appropriate
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Inductive Bias. Examples

Too weak inductive bias:

Weak assumptions about
class ℋ

Huge family of models
Much sensitivity to the
data
Many degrees of freedom

Too strong inductive bias:

Strong assumptions about ℋ

No flexibility in the model
Ignoring the data
Few degrees of freedom
“Bad” bias leads to inadequate
model

Examples of inductive bias:

for classification: cases that are near each other tend to belong
to the same class, distinct classes tend to be separated by wide
boundaries
for regression: regression function is linear
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Generalization, Underfitting and Overfitting

How to measure the quality of inductive bias?

Definition
Generalization of the model is its ability to accurately predict
responses for previously unseen data

Underfitting: model cannot capture the underlying trend or patterns
in the data
Overfitting: model describes random error or noise instead of the
underlying relationship
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Estimating the Generalization

How to measure generalization of a model?

Generalization ability of a model is related to the quality of its
inductive bias

To measure the generalization we need unseen data

Training data is used to fit the model

Validation data is used to test the generalization ability of the
trained models and select the best one

Test data is used to final accuracy estimation of the model

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡

𝒟𝑇𝑟 = 𝒟𝑇 ∪ 𝒟𝑉
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Training, Validation and Test Samples

Validation sample is considered to be a part of the training process
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Loss Function

𝐹
(unknown)

ℎ
(model)

𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

ℎ(𝑥)

𝐿(ℎ, (𝑥, 𝑦))

Definition
Loss function (cost function) 𝐿(ℎ, (𝑥, 𝑦)) ∈ R+ is some measure of
predictive inaccuracy of model ℎ ∈ ℋ at (𝑥, 𝑦) ∈ 𝒳 × 𝒴

When comparing the same type of loss among many models, lower
loss indicates a better model
The best value: 𝐿(ℎ, (𝑥, 𝑦)) = 0 (means no error on 𝑥 ∈ 𝒳 )
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Statistical View

The map 𝐹 : 𝒳 → 𝒴 usually is not deterministic

Suppose that 𝑦 is an observation of random variable 𝑌 with
conditional distribution 𝑓𝑌 (𝑦|𝑥) for a given 𝑥 ∈ 𝒳

Suppose that vector 𝑥 ∈ 𝒳 is a random vector drawn from
distribution 𝑓𝑋(𝑥)

Hence, the loss function 𝐿(ℎ, (𝑋,𝑌 )) is a random variable (as a
function of random vector (𝑋,𝑌 ))

𝒟 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} is a sample drawn from joint
probability distribution 𝑓𝑋𝑌 (𝑥, 𝑦) = 𝑓𝑌 (𝑦|𝑥)𝑓𝑋(𝑥)

In practice, 𝑓𝑋𝑌 (𝑥, 𝑦) is usually unknown
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Risk and Empirical Risk

Definition
Risk 𝑅(ℎ) associated with model ℎ is expectation of the loss
function:

𝑅(ℎ) = M[𝐿(ℎ, (𝑋,𝑌 ))] =

∫︁
𝒳 ×𝒴

𝐿(ℎ, (𝑥, 𝑦))𝑓𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

Definition
Empirical risk 𝑅*(ℎ) associated with model ℎ is an estimation of
risk 𝑅(ℎ) as mean value of the loss function over sample 𝒟 :

𝑅*(ℎ) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿
(︁
ℎ,

(︁
𝑥(𝑖), 𝑦(𝑖)

)︁)︁
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ERM principle

Empirical risk 𝑅*(ℎ) represents a error of model ℎ over sample 𝒟

Example for regression tasks:
𝐿(ℎ, (𝑥, 𝑦)) = (ℎ(𝑥)− 𝑦)2 — quadratic loss function

𝑅*(ℎ) = 1
𝑛

∑︀𝑛
𝑖=1

(︀
ℎ(𝑥(𝑖))− 𝑦(𝑖)

)︀2
— mean squared error (MSE)

Example for classification tasks:
𝐿(ℎ, (𝑥, 𝑦)) = [ℎ(𝑥) ̸= 𝑦] — 0-1 loss function

𝑅*(ℎ) = 1
𝑛

∑︀𝑛
𝑖=1

[︀
ℎ(𝑥(𝑖)) ̸= 𝑦(𝑖)

]︀
— classification error

Objective of learning algorithm 𝜇:
𝑅*

𝑇 (ℎ) → min
ℎ∈ℋ

— empirical risk minimization (ERM)

The learning algorithm defined by the ERM principle consists in
solving this optimization problem
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Risk for Quadratic Loss

ℎ(𝑥) — response of the model ℎ at given 𝑥 ∈ 𝒳 (determined)
𝑌 = 𝐹 (𝑥) — value of target function at given 𝑥 ∈ 𝒳 (random)

Risk for quadratic loss function 𝐿(ℎ, (𝑥, 𝑌 )) at given 𝑥 ∈ 𝒳 :

𝑟(ℎ, 𝑥) = M[𝐿(ℎ, (𝑥, 𝑌 ))|𝑥] = M
[︀
(ℎ(𝑥)− 𝑌 )2|𝑥

]︀
= ℎ2(𝑥)− 2ℎ(𝑥)M[𝑌 |𝑥] + M[𝑌 2|𝑥]

= ℎ2(𝑥)− 2ℎ(𝑥)M[𝑌 |𝑥] + D[𝑌 |𝑥] + (M[𝑌 |𝑥])2

= (ℎ(𝑥)−M[𝑌 |𝑥])2 + 𝜎2
𝑥

(ℎ(𝑥)−M[𝑌 |𝑥])2 — error of model ℎ at given 𝑥 ∈ 𝒳

𝜎2
𝑥 = D[𝑌 |𝑥] — noise, doesn’t depend on 𝒟 or ℎ

ℎ(𝑥) = M[𝑌 |𝑥],∀𝑥 ∈ 𝒳 ⇔ ℎ(𝑥) is a regression function 𝑦 on 𝑥
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Bias-Variance Decomposition

𝑟(ℎ, 𝑥) = (ℎ(𝑥)−M[𝑌 |𝑥])2 + 𝜎2
𝑥 — risk at given 𝑥 ∈ 𝒳

Hypothesis ℎ formed by learning algorithm 𝜇 depends on training
data 𝒟𝑇 : ℎ(𝑥,𝒟𝑇 ) — response of the model ℎ at given 𝑥 ∈ 𝒳
trained on random sample 𝒟𝑇

Expectation over all random samples 𝒟𝑇 :

M
[︁
(ℎ(𝑥,𝒟𝑇 )−M[𝑌 |𝑥])2

]︁
= M

[︀
ℎ(𝑥,𝒟𝑇 )

2
]︀
− 2M[ℎ(𝑥,𝒟𝑇 )]M[𝑌 |𝑥] + M[𝑌 |𝑥]2

= D [ℎ(𝑥,𝒟𝑇 )] + M[ℎ(𝑥,𝒟𝑇 )]
2 − 2M[ℎ(𝑥,𝒟𝑇 )]M[𝑌 |𝑥] + M[𝑌 |𝑥]2

= (M[ℎ(𝑥,𝒟𝑇 )]−M[𝑌 |𝑥])2 +D [ℎ(𝑥,𝒟𝑇 )]

(M[ℎ(𝑥,𝒟𝑇 )]−M[𝑌 |𝑥]) — statistical bias of model ℎ at given 𝑥
D [ℎ(𝑥,𝒟𝑇 )] — variance of model ℎ over training samples 𝒟𝑇
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Bias-Variance Trade-off

Risk of the model ℎ at given 𝑥 ∈ 𝒳 (expectation over training
samples 𝒟𝑇 ):

𝑅(ℎ, 𝑥) = (M[ℎ(𝑥,𝒟𝑇 )]−M[𝑌 |𝑥])2 +D [ℎ(𝑥,𝒟𝑇 )] + 𝜎2
𝑥

𝑅(ℎ, 𝑥) = 𝐵𝑖𝑎𝑠2[ℎ] + D[ℎ] + 𝜎2
𝑥

Three sources of error:
𝐵𝑖𝑎𝑠2[ℎ] — error due to incorrect assumptions (bad inductive
bias)
D[ℎ] — error due to variance of training samples (inability to
perfectly estimate model’s parameters from limited and noisy
data)
𝜎2
𝑥 — unavoidable error (doesn’t depend on model)

Inductive bias determines trade-off between bias and variance of
model ℎ
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Bias-Variance Trade-off. Illustration 1

Overfitting Underfitting Good balance

High variance leads to overfitting
High bias leads to underfitting

Strong inductive bias: low or high high bias, low variance
Weak inductive bias: low or high bias, high variance

Appropriate inductive bias leads to low bias, low variance
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Bias-Variance Trade-off. Illustration 2

Dartboard = hypothesis space
Bullseye = target function
Darts = learned models
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Inductive Bias and Model Complexity

Strong inductive bias leads to low model complexity
Weak inductive bias leads to high model complexity
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Generalization and Model Complexity

Generalization of model depends on its complexity
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Estimation of Model Error

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡 — available data
ℎ ∈ ℋ — model trained on 𝒟𝑇

How to estimate the error of the model ℎ?

𝑅(ℎ) — true risk of model ℎ

𝑅*
𝑇 (ℎ), 𝑅

*
𝑉 (ℎ), 𝑅

*
𝑇𝑠𝑡(ℎ) — empirical risks (e.g. MSE) over train,

validation and test samples

𝑅*
𝑇 (ℎ) — this estimate is optimistic (i.e. biased)

𝑅*
𝑉 (ℎ) — was used in training process

𝑅*
𝑇𝑠𝑡(ℎ) — estimation of model error over unseen examples

𝑅*
𝑇𝑠𝑡(ℎ) looks good estimation but...

a single training and test set
don’t tell us how sensitive error is to a particular training sample
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Estimation of Model Error

𝒟 = (𝒟𝑇 ∪ 𝒟𝑉 ) ∪ 𝒟𝑇𝑠𝑡 — available data
ℎ ∈ ℋ — model trained on 𝒟𝑇

How to estimate the error of the model ℎ?

𝑅(ℎ) — true risk of model ℎ

𝑅*
𝑇 (ℎ), 𝑅

*
𝑉 (ℎ), 𝑅

*
𝑇𝑠𝑡(ℎ) — empirical risks (e.g. MSE) over train,

validation and test samples

𝑅*
𝑇 (ℎ) — this estimate is optimistic (i.e. biased)

𝑅*
𝑉 (ℎ) — was used in training process

𝑅*
𝑇𝑠𝑡(ℎ) — estimation of model error over unseen examples

𝑅*
𝑇𝑠𝑡(ℎ) looks good estimation but... a single training and test set

don’t tell us how sensitive error is to a particular training sample
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Partitioning the Data

Solution: repeatedly partitioning the available data into training
and test sets

ℎ𝑖 — model trained on training data from 𝑖-th partition, 𝑖 = 1, ..., 𝑘
𝑅*

𝑇𝑠𝑡(ℎ1), ..., 𝑅
*
𝑇𝑠𝑡(ℎ𝑘) — estimations of risk for models ℎ1, ..., ℎ𝑘
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Cross-Validation Techniques

Definition
Cross-validation (CV) is a model evaluation technique used to
assess a machine learning algorithm’s performance in making
predictions on new datasets that it has not been trained on

Cross validation techniques:
Repeated random sub-sampling (Monte-Carlo CV)
𝑘-fold
Holdout
Leave-one-out (LOOCV)
Resubstitution

Resubstitution does not partition the data, uses the training data
for validation
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Repeated Random Sub-sampling CV

Whole data is randomly partitioned into training and test
subsamples 𝑘 times in specified proportion

Sample of errors: 𝑅*
𝑇𝑠𝑡(ℎ1), ..., 𝑅

*
𝑇𝑠𝑡(ℎ𝑘)
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𝑘-fold CV

Whole data is randomly partitioned into 𝑘 equal sized subsamples
(folds). One of 𝑘 folds is retained as the test data, and the
remaining 𝑘 − 1 folds are used as training data

Sample of errors: 𝑅*
𝑇𝑠𝑡(ℎ1), ..., 𝑅

*
𝑇𝑠𝑡(ℎ𝑘)
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Leave-one-out CV

LOOCV is particular case of 𝑘-fold CV when 𝑘 = 𝑛

Sample of errors: 𝑅*
𝑇𝑠𝑡(ℎ1), ..., 𝑅

*
𝑇𝑠𝑡(ℎ𝑛)
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Holdout CV

Whole data is randomly partitioned into two sets: training and test
subsamples in specified proportion

Sample of errors: 𝑅*
𝑇𝑠𝑡(ℎ)
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Stratified sampling

The test subsets (folds) are selected so that the mean response
value is approximately equal in all the folds

In the case of a classification, stratified cross-validation keep the
distribution of class labels in each fold

In practice: first stratify instances by class, then randomly select
instances from each class proportionally
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True error estimation

Whenever we use multiple training sets, as in 𝑘-fold CV and
random sub-sampling CV, we are evaluating a learning algorithm 𝜇,
no individual learned model ℎ

The true error 𝑅𝑇𝑠𝑡 is the error when tested on the entire
population of data instances

Sample of errors: 𝑅*
𝑇𝑠𝑡(ℎ1), ..., 𝑅

*
𝑇𝑠𝑡(ℎ𝑘)

Point estimator: 𝑅𝑇𝑠𝑡 =
1
𝑘

∑︀𝑘
𝑖=1𝑅

*
𝑇𝑠𝑡(ℎ𝑖)

Variance: 𝑠2[𝑅𝑇𝑠𝑡] =
1
𝑘

∑︀𝑘
𝑖=1(𝑅

*
𝑇𝑠𝑡(ℎ𝑖)−𝑅𝑇𝑠𝑡)

2

The cross-validation estimator 𝑅𝑇𝑠𝑡 is very nearly unbiased for 𝑅𝑇𝑠𝑡

The variance 𝑠2[𝑅𝑇𝑠𝑡] can be reduced by increasing the size of test
set
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Internal Cross-Validation

Instead of a single validation set, we can use cross-validation within
a training set (e.g. to find meta-parameters and select a model)
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Overview

Inductive bias
Generalization, underfitting and overfitting
Training, validation and test samples
Loss function, risk and empirical risk
ERM principle
Bias-variance decomposition
Bias-variance trade-off
Cross-validation techniques
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Linear Regression Models. Problem Statement

Given:
𝒟𝑇 = {(𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))} — train data sample, 𝒴 = R

𝑓1(𝑥), ..., 𝑓𝑀 (𝑥) — features of object 𝑥 ∈ 𝒳

ℋ = {ℎ : ℎ(𝑥) =
∑︀𝑀

𝑗=1 𝛽𝑗𝑓𝑗(𝑥)} — class of hypotheses (linear
models)

𝐿(ℎ, (𝑥, 𝑦)) = (ℎ(𝑥)− 𝑦)2 — quadratic loss function

Objective:
Find parameters 𝛽1, ..., 𝛽𝑀 that minimize empirical risk over train
sample 𝒟𝑇 :

𝑅*(ℎ) → min
𝛽1,...,𝛽𝑀
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Linear Regression Models. Background

Empirical risk: 𝑅*(ℎ) = 1
𝑛

∑︀𝑛
𝑖=1

(︁∑︀𝑀
𝑗=1 𝛽𝑗𝑓𝑗(𝑥

(𝑖))− 𝑦(𝑖)
)︁2

Solution: 𝛽 = (𝐹 𝑇𝐹 )−1𝐹 𝑇 𝑦,

where 𝐹 =

⎛⎝𝑓1(𝑥
(1)) ... 𝑓𝑀 (𝑥(1))

... ... ...

𝑓1(𝑥
(𝑛)) ... 𝑓𝑀 (𝑥(𝑛))

⎞⎠ — design matrix,

𝑦 =
(︀
𝑦(1), ..., 𝑦(𝑛)

)︀𝑇
— response vector
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Validation of Regression Model

How to validate the trained model ℎ?

The validation process involves:

Analyzing the goodness-of-fit of the regression

Coefficient of determination: 𝑅2 = 1− 𝐷𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝐷𝑡𝑜𝑡𝑎𝑙

Analyzing the regression residuals

Residual at 𝑥(𝑖), 𝑖 = 1, ..., 𝑛:
𝑒(𝑥(𝑖)) = 𝑦(𝑖) −

∑︀𝑀
𝑗=1 𝛽𝑗𝑓𝑗(𝑥

(𝑖))

Graphical analysis
Quantitative analysis

Analyzing the regression performance on unseen data

Empirical risk (MSE) on test set
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Analyzing the Coefficient of Determination

Coefficient of determination 𝑅2 close to 1 does not guarantee that
the model fits the data well!

Anscombe’s quartet

All four sets are identical when examined using simple summary
statistics (mean, variance, correlation, linear regression, coefficient
of determination), but vary considerably when graphed
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Graphical Analysis of Residuals

If the residuals appear to behave randomly, it suggests that the
model should be adequate to the data

Sufficiency of the functional part of the model: scatter plots of
residuals versus predictors
Non-constant variation across the data (heteroscedasticity:
scatter plots of residuals versus predictors and fitted variable
Independence of residuals: lag plot
Normality of residuals: histogram

Plots of the residuals versus predictors or fitted variable that exhibit
systematic structure indicate that the form of the modelled
function can be improved in some way

Alexander Trofimov Supervised Learning 39 / 42



Supervised Learning
Regression

Problem Statement
Regression Validation

Residual Analysis. Examples 1

Some outliers appear
Exclude outliers and train new
model

Many points in the upper-right
and lower-left quadrants,
indicating positive serial
correlation (autocorrelation)
among the residuals
Use autoregressive or other
models
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Residual Analysis. Examples 2

There is some tendency for larger
fitted values to have larger
residuals. Perhaps the model
errors are proportional to the
measured values
Use some variance-stabilizing
transformations of variables, use
other loss function

There is no obvious patterns,
model seems to be adequate
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Quantitative Analysis of Residuals

Types of analyses:

Sufficiency of the functional part of the model
— lack-of-fit tests
Test for heteroskedasticity of residuals
— White’s test, etc.
Test for autocorrelation of the residuals
— Durbin-Watson’s test, etc.
Test for normality of the residuals
— any goodness-of-fit tests
Analysis if out-of-sample mean squared error (mean squared
prediction error) and out-of-sample residuals
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