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What is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data

“Machine learning is field of study that gives computers the ability
to learn without being explicitly programmed.”

— Arthur Samuel, in IBM Journal of Research and Development, 1959

The term “Machine learning” is related to:

@ Artificial intelligence
@ Mathematical statistics

@ Data science
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Machine Learning and Artificial Intelligence
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When we talk about Al we primarily refer to two specific areas:
machine learning and deep learning
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Machine Learning and Mathematical Statistics

I

statistics

Arificial intelligence,

=

Machine Learning

“When you're fundraising, it's Al. When you're hiring, it's ML.
When you're implementing, it's logistic regression.”

— everyone on Twitter ever
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Machine Learning Pipeline

Traditional Approach

Launch!
A
@ ® ® ©
Studythe | o] \write rules Evaluate
problem

®

Analyze ¢
errors

Since the problem is difficult, your program will likely become a
long list of complex rules that pretty hard to maintain
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Machine Learning Approach

Launch!

Y
Study the Train ML Evaluate
> . .
problem algorithm solution
Analyze
errors

Machine learning approach is useful for problems that are too
complex for traditional approaches or have no known algorithms
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Traditional Programming vs Machine Learning

Traditional programming:

Data
Output
Program
Machine learning:
Data
Program
Output
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Approaches to Modelling

Approaches to modelling:

@ Model-based
Use known physical, economical, biological, etc. laws and
expert rules to construct the model

@ Data-driven
Use data to construct the model
Key features of data-driven approach:

@ The precise mathematical model is absent or unacceptably
complex

@ There are statistical “input-output” data about the system
under modelling

@ The data processing algorithm is unknown a priori, it is a
result of learning procedure
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Data-driven vs Model-based Approaches
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(typically tied to system simplicity)

Source: Adapted from Inman et al. (2005), p. 6

The model-based approach is generally more robust in the sense
that it can deal more easily with new or unforeseen situations
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Traditional Statistics vs Machine Learning

Traditional Statistics Machine Learning
< A Data Science Continuum >
White-box modelling Black-box modelling
simpler computation, emphasis on high computational complexity, emphasis
introspection, form, causal effects and on speed and quality of prediction,
processes, finding a ‘correct’ model finding a 'performant’ model

Most machine learning systems require the ability to explain why
certain predictions are made

@ Black-box models: accurate but difficult to explain
Neural networks, complicated ensembles, etc.

@ White-box models: weaker but usually simple to explain
Linear regression, decision trees, etc.
We define explainability-accuracy trade-off when choosing a
machine learning model
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Machine Learning Pipeline

Machine Learning and Data Science

Topical Analytics Techniques
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History of Data Science
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Machine Learning Milestones

1997 IBM's Deep Blue beats the world champion at chess

2005 Autonomous ground vehicles: DARPA Grand Challenge

2006 Google Translate

2011 DARPA CALO project, Apple Siri

2011 IBM's Watson beats two human champions in a Jeopardy!
competition

2012 The Google Brain team create a neural network that learns to
recognize cats by watching unlabeled images taken from frames of
YouTube videos

2014 Facebook DeepFace identifies faces with 97% accuracy

2015 OpenAl by Elon Musk and Sam Altman - $1 bin.

2016 OpenAl, Google's DeepMind: Atari games

2016 Google's AlphaGo beats the world champion at Go

2018 Tesla launches self-driving vehicle

2020 Baidu Inc. launches robotaxi service Apollo Go

2020 DeepMind AlphaFold — predicting the results of protein folding
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Machine Learning Applications
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Machine Learning Competitions

http://www.netflixprize.com/ http://www.kaggle.com/ http://dataring.ru/
Rl Passenger Screening Algorithm Challenge $1,500,000
\gf curacy of the Department of Homeland Security's t h oy s

@ improve t

"’ Zillow Prize: Zillow’s Home Value Prediction (Zestimate) $1200,000

= Can you improve the algorithm that changed the world of real estate? s
Zillow

= Carvana Image Masking Challenge 525000

e Automatically identify the boundaries of the car in an image teams

Text Normalization Challenge - English Language $25,000

En Convert English text from written expressions into spoken forms 5 teams

Text Normalization Challenge - Russian Language $25,000

Ru Convert Russian text from written expressions into spoken forms 3teams

Web Traffic Time Series Forecasting $25,000

uture traffic to Wikipedia pages 1020 teams

Personalized Medicine: Redefining Cancer Treatment $15,000

Predict the effect of Genetic Variants to enable Personalized Medicine 1,066 teams
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CRISP-DM

Cross-Industry Standard Process for Data Mining (CRISP-DM) is
the commonly used data mining methodology (1999)

Companies: Data mining life cycle:
@ SPSS
o Teradata Shaness Data
o Daimler AG O e et
@ NCR Corporation
e OHRA

IBM has released a new
methodology for Data
Mining/Predictive Analytics projects
in 2015 called Analytics Solutions
Unified Method (ASUM-DM) which
refines and extends CRISP-DM
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Machine Learning Pipeline
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Pre-processing
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Feature Engineering

Feature engineering asks: what is the best representation of the
sample data to learn a solution to your problem?

Better features mean:

o Flexibility
@ Simpler models
@ Better results

Input Space Feature Space
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Accuracy Estimation

Model estimation asks: how can we get an unbiased estimate
of the accuracy of a learned model?
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Machine Learning Paradigms

Supervised learning

Unsupervised learning

@ Reinforcement learning

Ensemble learning

Semi-supervised learning

Active learning

(]

Deep learning

Transfer learning
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Machine Learning Tasks

Image
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Meaningful Detection ®
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. REDUCTION
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s
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LEARNING
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Learning Tasks
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Supervised Learning. Problem Statement

9 = {("E(l),y(l)),,(:E("),y("))} _swstem | by
.T(Z(i)e,%, 1=1,n _;TW%L‘
model

yWew, i=TIn

Criterion:
1< N

R*=—) Loss <y(’),gj(z)) — min

7 is the model's output for input (9, i =1, n

w is a vector of model’s parameters

Loss is a loss function

3

Find out:
Vector w* that minimizes R*
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Supervised Learning. Types of problems

@ Classification

7 = {(zW,yV), .., (@™, y™)}
()E%ISZth object 17
y e ¥ is label of z(?)

@ ={1,..., K} is a set of class

labels

@ Regression
9 = {(@D,y0), ., (2™, )}
@ e 2 is i-th object, i —17
y € % is response for ()
@ =R’ is a set of responses :
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Supervised Learning. Approaches

(]

Linear regression

Logistic regression

Bayesian methods

@ Nearest neighbor methods

Support vector machines

Decision tree

Neural networks
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Machine Learnin,

Given:
P ={zW, .. 2},

Find out:

Introduction

2(

Paradigms

e 2,

Supervised Learning
Unsupervised Learning
Other Paradigms

Unsupervised Learning. Problem Statement

1=1,n

Better representation of &, estimate distribution, detect anomalies,

find out patterns etc.

Training
Text,

Images,
etc.

Documents,

New Text,
Document,
Image,
etc.

=

|::> Vectors

Feature

ay

Feature
Vector

E—

Unsupervised Learning Model

Machine
Learning
Algorithm

4

Predictive
Model
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Unsupervised Learning. Types of Problems

Clustering s sumper ot s >

Missing data recovery

°
°
@ Dimensionality reduction
@ Visualization

°

Anomaly detection
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Unsupervised Learning. Approaches

Cluster analysis

(]

Self-organizing maps (SOM)

Principal component analysis (PCA)

Independent component analysis (ICA)
@ Multidimensional scaling (MDS)
e T-distributed Stochastic Neighbour Embedding (t-SNE)
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Supervised vs Unsupervised Learning

Supervised Vs. Unsupervised

= Supervised cl :
— knowledge of output - leaming with the @
presence of an “expert” / teacher &2
+ data is labelled with a class or value '

» Goal: predict class or value label

— e.g. Neural Netwark, Support Vector Machines, CSIEI

Decision Trees, Bayesian Classifiers ....

= Unsupervised

— no knowledge of output class or value -
» data is unlabelled or value un-known I:l l:l
« Goal: determine data patterns/groupings |:|

— Self-guided learning algorithm M

— (intemal self-evaluation against some criteria)

— e.g. k-means, genetic algorithms, clustering
approaches ...
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Semi-supervised Learning. Problem Statement

Given:
Labeled sample:

P21, = {(zM,yW), ., (x(nr) 4 (L))}
tDe2, yDew, i=1ng

% ={1,..., K} is a set of class labels
Unlabeled sample:

Dy = {x(”LH), ...,1:(”L+”U)}, ng < ny
2t e 0 =1 ny

Objectives:

@ Construct classification algorithm

@ Predict labels for cases from Z;; (transductive learning)
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Semi-supervised Learning. lllustration 1

Semi-supervised Learning # Supervised Learning
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Machine Learning Paradigms @il Perectians

Semi-supervised Learning. lllustration 2

Semi-supervised Learning # Unsupervised Learning

Unsupervised clusteri ng Semi—superviséd clustering

Alexander Trofimov Machine Learning Approaches

31/ 40



Supervised Learning
. . " Unsupervised Learning
Machine Learning Paradigms @il Perectians

Ensemble Learning

Given: e
P = {20,y D), .., (&), y ™)} hi,...h;, — base classifiers
20 e 7, ’ i i,r; ’ (hypotheses)

y® e ={1,... K} — class labels h=hio..ohL

» Classifier |

). Ensemble | &
» Classitier 2 O, {

strategy

T - > 1
Input Ensemble

output

p| Classifier L ()
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Ensemble Learning. Approaches

Approaches:
@ Bayesian voting

@ Manipulating the training sample

o Cross-validated committees
e Bagging (Bootstrap aggragation)
o Boosting

@ Manipulating the features

@ Manipulating the outputs

Algorithms:

@ Voting classifiers and regressors
@ AdaBoost

@ Random forest

@ Extremely randomized trees

°
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Reinforcement Learning

The model (agent) interacts with its environment in discrete time
steps

The agent’s objective is to act in the environment so as to
maximize some long-term cumulative reward

The train sample is absent, the learning is in on-line mode, the
reactions of environment are used

Reward

internal state

“reward
X

en vi ro nment
. Action
action ——— Actor
Qi"“ o
leamning rater Values
inverse temperature
discount rate y
- Critic
observation _
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Active Learning

Active learning is a special case of semi-supervised learning in which
a learning algorithm is able to interactively query the user (or some
other information source) to obtain the desired outputs for given
unlabeled data

In statistics literature active learning is known as optimal
experimental design

ﬁ T e
machine leaming ( Unlakeled Data
s \ e

select and resmave
single exemple
labeled

training set —— KT__”;\D‘ Active [requentr | 1
fem— Classifier J+ unnn:} Leamim 1 provide eacher
uniabeled poot e Aigar‘.lth; Leometiabe)

u E add labeled
k ,/ (ameams )

-

oracle (e.g., human annotator)
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Deep Learning. Approaches

Deep learning (hierarchical learning) is part of a broader family of
machine learning methods based on learning data representations,
as opposed to task-specific algorithms

@ Convolutional neural networks (CNN)

@ Deep belief networks (DBN)

@ Deep Boltzmann machine

@ Deep recurrent neural network

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
L ~-o.  dog(0.01)
5 mb(;)a??u’ 94)
bird (0.02)
o N A M o = RO 203 o
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Unsupervised Learning
Other Paradigms
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Machine Learning vs Deep Learning

Machine Learning

Input Feature extraction Classification

Deep Learning

o 233 -

Input Feature extraction + Classification Output
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Transfer Learning

Transfer learning (inductive transfer) is a research problem in
machine learning that focuses on storing knowledge gained while
solving one problem and applying it to a different but related

problem

TRANSFER OF LEARNING

1)

The application of skills, knowledge, andfor
attitudes that were learned in one situation to
another learning situation [Perkins, 1992)
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Machine Learning Paradigms

Transfer Learning

[ Source labels Target labels
S o Small
amount of
e ——————— data/labels
Large ! | /
amount of | \ /
data/labels f Source model \ f

Source data [_-F _ﬁ_t: 1
arget data
e E.g. Imagehet = |__Eg.PASCAL _
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